【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
【答案】C
【解析】解:(方法一)作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.
令y= x+4中x=0,則y=4,
∴點(diǎn)B的坐標(biāo)為(0,4);
令y= x+4中y=0,則 x+4=0,解得:x=﹣6,
∴點(diǎn)A的坐標(biāo)為(﹣6,0).
∵點(diǎn)C、D分別為線段AB、OB的中點(diǎn),
∴點(diǎn)C(﹣3,2),點(diǎn)D(0,2).
∵點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,
∴點(diǎn)D′的坐標(biāo)為(0,﹣2).
設(shè)直線CD′的解析式為y=kx+b,
∵直線CD′過點(diǎn)C(﹣3,2),D′(0,﹣2),
∴有 ,解得: ,
∴直線CD′的解析式為y=﹣ x﹣2.
令y=﹣ x﹣2中y=0,則0=﹣ x﹣2,解得:x=﹣ ,
∴點(diǎn)P的坐標(biāo)為(﹣ ,0).
故選C.
(方法二)連接CD,作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.
令y= x+4中x=0,則y=4,
∴點(diǎn)B的坐標(biāo)為(0,4);
令y= x+4中y=0,則 x+4=0,解得:x=﹣6,
∴點(diǎn)A的坐標(biāo)為(﹣6,0).
∵點(diǎn)C、D分別為線段AB、OB的中點(diǎn),
∴點(diǎn)C(﹣3,2),點(diǎn)D(0,2),CD∥x軸,
∵點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,
∴點(diǎn)D′的坐標(biāo)為(0,﹣2),點(diǎn)O為線段DD′的中點(diǎn).
又∵OP∥CD,
∴點(diǎn)P為線段CD′的中點(diǎn),
∴點(diǎn)P的坐標(biāo)為(﹣ ,0).
故選C.
(方法一)根據(jù)一次函數(shù)解析式求出點(diǎn)A、B的坐標(biāo),再由中點(diǎn)坐標(biāo)公式求出點(diǎn)C、D的坐標(biāo),根據(jù)對(duì)稱的性質(zhì)找出點(diǎn)D′的坐標(biāo),結(jié)合點(diǎn)C、D′的坐標(biāo)求出直線CD′的解析式,令y=0即可求出x的值,從而得出點(diǎn)P的坐標(biāo).
(方法二)根據(jù)一次函數(shù)解析式求出點(diǎn)A、B的坐標(biāo),再由中點(diǎn)坐標(biāo)公式求出點(diǎn)C、D的坐標(biāo),根據(jù)對(duì)稱的性質(zhì)找出點(diǎn)D′的坐標(biāo),根據(jù)三角形中位線定理即可得出點(diǎn)P為線段CD′的中點(diǎn),由此即可得出點(diǎn)P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m1=,m2=﹣x+3.
(1)若m1與m2互為相反數(shù),求x的值;
(2)若m1是m2的2倍,求x的值;
(3)若m2比m1小1,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華書店舉行購書優(yōu)惠活動(dòng)
①一次性購書不超過100元,不享受打折優(yōu)惠
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書200元以上一律打七折
小麗在這次活動(dòng)中,兩次購書總共付款240.87元,第二次購書原價(jià)是第一次購書原價(jià)的3倍,那么小麗這兩次購書原價(jià)的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)k=1時(shí),直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a,b,c滿足(a-)2++|c-2|=0.
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長和面積;若不能構(gòu)成三角形,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)關(guān)于x的一元二次方程:M: N:,其中,以下列四個(gè)結(jié)論中,錯(cuò)誤的是( )
A. 如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N也有兩個(gè)不相等的實(shí)數(shù)根;
B. 如果方程M有兩根符號(hào)異號(hào),那么方程N的兩根符號(hào)也異號(hào);
C. 如果5是方程M的一個(gè)根,那么是方程N的一個(gè)根;
D. 如果方程M和方程N有一個(gè)相同的根,那么這個(gè)根必定是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、C兩點(diǎn)的坐標(biāo)分別為(6,0),(0,10),點(diǎn)B在第一象限內(nèi).
(1)寫出點(diǎn)B的坐標(biāo),并求長方形OABC的周長;
(2)若有過點(diǎn)C的直線CD把長方形OABC的周長分成3:5兩部分,D為直線CD與長方形的邊的交點(diǎn),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com