【題目】如圖,已知l1⊥l2 , ⊙O與l1 , l2都相切,⊙O的半徑為2cm,矩形ABCD的邊AD、AB分別與l1 , l2重合,AB=4 cm,AD=4cm,若⊙O與矩形ABCD沿l1同時向右移動,⊙O的移動速度為3cm/s,矩形ABCD的移動速度為4cm/s,設移動時間為t(s)
(1)如圖①,連接OA、AC,則∠OAC的度數(shù)為°;
(2)如圖②,兩個圖形移動一段時間后,⊙O到達⊙O1的位置,矩形ABCD到達A1B1C1D1的位置,此時點O1 , A1 , C1恰好在同一直線上,求圓心O移動的距離(即OO1的長);
(3)在移動過程中,圓心O到矩形對角線AC所在直線的距離在不斷變化,設該距離為d(cm),當d<2時,求t的取值范圍(解答時可以利用備用圖畫出相關示意圖).
【答案】
(1)105
(2)如圖位置二,當O1,A1,C1恰好在同一直線上時,設⊙O1與l1的切點為E,
連接O1E,可得O1E=2,O1E⊥l1,
在Rt△A1D1C1中,∵A1D1=4,C1D1=4 ,
∴tan∠C1A1D1= ,∴∠C1A1D1=60°,
在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,
∴A1E= = ,
∵A1E=AA1﹣OO1﹣2=t﹣2,
∴t﹣2= ,
∴t= +2,
∴OO1=3t=2 +6;
(3)①當直線AC與⊙O第一次相切時,設移動時間為t1,
如圖位置一,此時⊙O移動到⊙O2的位置,矩形ABCD移動到A2B2C2D2的位置,
設⊙O2與直線l1,A2C2分別相切于點F,G,連接O2F,O2G,O2A2,
∴O2F⊥l1,O2G⊥A2C2,
由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,
∴∠O2A2F=60°,
在Rt△A2O2F中,O2F=2,∴A2F= ,
∵OO2=3t1,AF=AA2+A2F=4t1+ ,
∴4t1+ ﹣3t1=2,
∴t1=2﹣ ,
②當直線AC與⊙O第二次相切時,設移動時間為t2,
記第一次相切時為位置一,點O1,A1,C1共線時位置二,第二次相切時為位置三,由題意知,從位置一到位置二所用時間與位置二到位置三所用時間相等,
∴ +2﹣(2﹣ )=t2﹣( +2),
解得:t2=2+2 ,
綜上所述,當d<2時,t的取值范圍是:2﹣ <t<2+2 .
【解析】解:(1)∵l1⊥l2 , ⊙O與l1 , l2都相切, ∴∠OAD=45°,
∵AB=4 cm,AD=4cm,
∴CD=4 cm,
∴tan∠DAC= = = ,
∴∠DAC=60°,
∴∠OAC的度數(shù)為:∠OAD+∠DAC=105°,
所以答案是:105;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結DE,已知∠B=30°,⊙O的半徑為12,弧DE的長度為4π.
(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,一直線a向下平移3個單位后所得直線b經(jīng)過點A(0,3),將直線b繞點A順時針旋轉(zhuǎn)60°后所得直線經(jīng)過點B(﹣ ,0),則直線a的函數(shù)關系式為( )
A.y=﹣ x
B.y=﹣ x
C.y=﹣ x+6
D.y=﹣ x+6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某籃球運動員去年共參加40場比賽,其中3分球的命中率為0.25,平均每場有12次3分球未投中.
(1)該運動員去年的比賽中共投中多少個3分球?
(2)在其中的一場比賽中,該運動員3分球共出手20次,小亮說,該運動員這場比賽中一定投中了5個3分球,你認為小亮的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l與半徑為4的⊙O相切于點A,P是⊙O上的一個動點(不與點A重合),過點P作PB⊥l,垂足為B,連接PA.設PA=x,PB=y,則(x﹣y)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】因長期干旱,甲水庫蓄水量降到了正常水位的最低值.為灌溉需要,由乙水庫向甲水庫勻速供水,20h后,甲水庫打開一個排灌閘為農(nóng)田勻速灌溉,又經(jīng)過20h,甲水庫打開另一個排灌閘同時灌溉,再經(jīng)過40h,乙水庫停止供水.甲水庫每個排泄閘的灌溉速度相同,圖中的折線表示甲水庫蓄水量Q(萬m3) 與時間t(h) 之間的函數(shù)關系.求:
(1)線段BC的函數(shù)表達式;
(2)乙水庫供水速度和甲水庫一個排灌閘的灌溉速度;
(3)乙水庫停止供水后,經(jīng)過多長時間甲水庫蓄水量又降到了正常水位的最低值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,則DE的長為( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜苔共用去16萬元.
(1)求兩批次購進蒜薹各多少噸?
(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com