【題目】如圖已知A,B兩點(diǎn)的坐標(biāo)分別為(40,0)(0,30),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)O運(yùn)動(dòng)同時(shí)直線EFx軸為起始位置以每秒1個(gè)單位長(zhǎng)度的速度向上平行移動(dòng)(EFx),并且分別與y軸、線段AB交于點(diǎn)EF,連接EP,FP設(shè)動(dòng)點(diǎn)P與直線EF同時(shí)出發(fā)運(yùn)動(dòng)時(shí)間為t

(1)求t=15秒時(shí),EF的長(zhǎng)度;

(2)直線EF、點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的t,使得PEF的面積等于160(平方單位)?若存在請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說明理由

【答案】(1)EF=20;(2)不存在使得的面積等于(平方單位)的值.

【解析】

(1)當(dāng)t=15時(shí),OE=15,易證BEF∽△BOA,從而求出EF的長(zhǎng)度;

(2)假設(shè)存在這樣的t,使得△PEF的面積等于160,則根據(jù)面積公式列出方程,由根的判別式進(jìn)行判斷得出結(jié)論

1)∵EFOA,∴∠BEF=∠BOA

又∵∠B=∠B,∴△BEF∽△BOA,∴,當(dāng)t=15時(shí),OE=BE=15,OA=40,OB=30,∴;

(2)∵△BEF∽△BOA,∴,∴,整理,t2﹣30t+240=0.

∵△=302﹣4×1×240=﹣60<0,∴方程沒有實(shí)數(shù)根∴不存在使得△PEF的面積等于160(平方單位)的t

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(-1,0)、C(4,0)

(1)經(jīng)過平移,可使ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,請(qǐng)直接寫出此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1坐標(biāo);(不必畫出平移后的三角形)

(2)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△ABC′,畫出△ABC′并寫出A′點(diǎn)的坐標(biāo);

(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的面積之比為1∶4,請(qǐng)你在網(wǎng)格內(nèi)畫出△A2B2C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測(cè)量得到∠CAH=37°,DBH=60°,AB=10m,求GH的長(zhǎng).(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿上的C處引拉線CECF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過點(diǎn)C的直線MN∥AB,D為AB上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE.

(1)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;

(2)在(1)的條件下,當(dāng)∠A等于多少度時(shí),四邊形BECD是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電商銷售一款夏季時(shí)裝,進(jìn)價(jià)40元/件,售價(jià)110元/件,每天銷售20件,每銷售一件需繳納電商平臺(tái)推廣費(fèi)用a元(a>0)。未來30天,這款時(shí)裝將開展“每天降價(jià)1元”的夏令促銷活動(dòng),即從第1天起每天的單價(jià)均比前一天降1元。通過市場(chǎng)調(diào)研發(fā)現(xiàn),該時(shí)裝單價(jià)每降1元,每天銷量增加4件。在這30天內(nèi),要使每天繳納電商平臺(tái)推廣費(fèi)用后的利潤(rùn)隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸正半軸、y軸的負(fù)半軸上,二次函數(shù)y(xh)2+k的圖象經(jīng)過BC兩點(diǎn).

(1)求該二次函數(shù)的頂點(diǎn)坐標(biāo);

(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍;

(3)設(shè)m,且Am,y1),Bm+1,y2)兩點(diǎn)都在該函數(shù)圖象上,試比較y1y2的大小,并簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,在我們進(jìn)入高中以后,將還會(huì)學(xué)到下面三角函數(shù)公式:

sin (αβ)sinαcosβcosαsinβ

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)試仿照例題,求出cos 15°的準(zhǔn)確值;

(2)我們知道,tanα,試求出tan 15°的準(zhǔn)確值.

查看答案和解析>>

同步練習(xí)冊(cè)答案