【題目】如圖,P在第一象限,半徑為3,動點A沿著P運動一周,在點A運動的同時,作點A關(guān)于原點O的對稱點B,再以AB為底邊作等腰三角形ABC,點C在第二象限,且sinA=0.8,點C隨點A運動所形成的圖形的面積為

【答案】16π.

【解析】

試題分析:如圖所示,點C隨A運動所形成的圖形為圓,根據(jù)等腰三角形的性質(zhì)求出CC′的長,即為圓的直徑,求出圓的面積即可.

解:如圖所示,點C隨A運動所形成的圖形為圓,CA=CB,點A關(guān)于原點O的對稱點B,

OCAB,OA=OB,sinA=0.8,可得OC=OA,OC′=OA′,

CC′=OC′﹣OC=(OA′﹣OA)=AA′=6×=8,

點C隨點A運動所形成的圓的面積為π×42=16π.

故答案為:16π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚運載火箭從地面L處發(fā)射,當(dāng)火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結(jié)果取小數(shù)點后兩位)?

(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,

sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀材料,再結(jié)合要求回答問題

【問題情景】

如圖:在四邊形ABCD中,ABAD,BADC90°E,F分別是BCCD上的點,且線段BEEF,FD滿足BEFDEF探究圖中EAFBAD之間的數(shù)量關(guān)系.

【初步思考】

小王同學(xué)探究此問題的方法是延長FDG,使DGBE,連結(jié)AG

先證明ABE≌△ADG,再證明AEF≌△AGF,

可得出EAFBAD之間的數(shù)量關(guān)系

【探索延伸】

將問題情景中條件BADC90°改為BD180°如圖),其余條件不變,請判斷上述數(shù)量關(guān)系是否仍然成立,若成立,請證明;若不成立,請說明理由

【實際應(yīng)用】

如圖,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處且相距210海里.試求此時兩艦艇的位置與指揮中心(O處)形成的夾角EOF的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)﹣t3×(﹣t)4×(﹣t)5

(2)(3a33+a3×a6﹣3a9

(3)

(4)(p﹣q)4÷(q﹣p)3×(p﹣q)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a7b=-2,則42a14b的值是( )

A. 0 B. 2 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      ;

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關(guān)系為      ;

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關(guān)系:      ;

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1a×a3×﹣a23

2)(1+2×﹣23π﹣30

3)(﹣0.2511×﹣412

4)(﹣2a22×a4﹣5a42

5)(x﹣y6÷y﹣x3×x﹣y2

6314×7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,A=ABC,直線EF分別交ABC的邊AB,AC和CB的延長線于點D,E,F(xiàn).

(1)求證:F+FEC=2A;

(2)過B點作BMAC交FD于點M,試探究MBCF+FEC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年預(yù)計建成34個地下調(diào)蓄設(shè)施,蓄水能力達到140000立方米,將140000用科學(xué)記數(shù)法表示應(yīng)為(

A.14×104 B.1.4×105 C.1.4×106 D.0.14×106

查看答案和解析>>

同步練習(xí)冊答案