【題目】已知ABC是等腰直角三角形,∠C=90°,點(diǎn)MAC的中點(diǎn),延長(zhǎng)BM至點(diǎn)D,使DM=BM,連接AD

1)如圖①,求證:DAMBCM

2)已知點(diǎn)NBC的中點(diǎn),連接AN

①如圖②,求證:BCMACN

②如圖③,延長(zhǎng)NA至點(diǎn)E,使AE=NA,連接DE.求證:BDDE

【答案】1)見解析;(2)①見解析;②見解析.

【解析】

(1)利用SAS進(jìn)行證明即可;

(2)由點(diǎn)MAC的中點(diǎn),點(diǎn)NBC的中點(diǎn),AC=BC,可得CM=CN,繼而利用SAS進(jìn)行證明即可;

AD中點(diǎn)F,連接EF,則AD=2AF,由△BCM≌△ACN△DAM≌△BCM,可推導(dǎo)得出AF=CN∠EAF=∠ANC,根據(jù)SAS可證明△EAF≌△ANC,從而可得∠NAC=∠AEF∠C=∠AFE=90°,進(jìn)而可得∠AFE=∠DFE=90°,繼而可以證明△AFE≌△DFE,則有∠EAD=∠EDA=∠ANC,繼而可得∠EDB=90°,問題得證.

(1)∵點(diǎn)MAC的中點(diǎn),∴AM=CM,

△DAM△BCM中,

,∴△DAM≌△BCM(SAS);

(2)①∵點(diǎn)MAC的中點(diǎn),點(diǎn)NBC的中點(diǎn),∴CM=AC,CN=BC

∵△ABC是等腰直角三角形,∴AC=BC∴CM=CN,

△BCM△ACN中,,∴△BCM≌△ACN(SAS)

AD中點(diǎn)F,連接EF,

AD=2AF,

∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN

∵△DAM≌△BCM,∴∠CBM=∠ADMAD=BC=2CN,

∴AF=CN∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,

∴AD∥BC,∴∠EAF=∠ANC

△EAF△ANC中,,∴△EAF≌△ANC(SAS),

∴∠NAC=∠AEF∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,

∵FAD的中點(diǎn),∴AF=DF,

△AFE△DFE中,,

∴△AFE≌△DFE(SAS),

∴∠EAD=∠EDA=∠ANC,

∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°–∠DAM=180°–90°=90°,

∴BD⊥DE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知拋物線E:y=ax2+bx+cx軸交于A,B(3,0)兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C(0,3),對(duì)稱軸為直線x=1.

(1)填空:a=   ,b=   ,c=   ;

(2)將拋物線E向下平移d個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在OBC內(nèi)(包括OBC的邊界),求d的取值范圍;

(3)如圖(2),設(shè)點(diǎn)P是拋物線E上任意一點(diǎn),點(diǎn)H在直線x=﹣3上,PBH能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=6,AB=10,點(diǎn)D是邊BC上一點(diǎn).若沿ADACD翻折,點(diǎn)C剛好落在AB邊上點(diǎn)E處,則AD= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家今年種植的夏黑葡萄喜獲豐收,采摘上市后若干天便全部銷完.小明對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(千克)與上市時(shí)間x()之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少15千克.

(1)16天的日銷售量是 千克.

(2)yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹形圖或列表的方法,求下列事件的概率:

(1)兩次取出小球上的數(shù)字相同的概率;

(2)兩次取出小球上的數(shù)字之和大于10的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC4,ABCDBD6,點(diǎn)ED點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿DA向點(diǎn)A勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒3個(gè)單位的速度沿CBC作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng).

1)試證明:ADBC

2)在移動(dòng)過程中,小芹發(fā)現(xiàn)當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取某個(gè)值時(shí),有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取哪些值時(shí),△DEG與△BFG全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且BO=OC=3AO.

(1)求拋物線的解析式;

(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(﹣12),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過A1,B兩點(diǎn)的直線解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案