【題目】如圖:△ABC是⊙O的內接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O的切線交AB的延長線于點D.

(1)求證:CD=CB;
(2)如果⊙O的半徑為 ,求AB的長.

【答案】
(1)證明:連接OB,則∠AOB=2∠ACB=2×45°=90°,

∵OA=OB,

∴∠OAB=OBA=45°,

∵∠AOC=150°,OA=OC,

∴∠OCA=∠OAC=15°,

∴∠OCB=∠OCA+∠ACB=60°,

∴△OBC是等邊三角形,

∴∠BOC=∠OBC=60°,

∴∠CBD=180°﹣∠OBA﹣∠OBC=75°,

∵CD是⊙O的切線,

∴OC⊥CD,

∴∠D=360°﹣∠OBD﹣∠BOC﹣∠OCD=360°﹣(60°+75°)﹣60°﹣90°=75°,

∴∠CBD=∠D,

∴CB=CD


(2)解:∵∠AOB=2∠ACB=90°,OA=OB=

∴AB= =2.


【解析】(1)首先連接OB,則∠AOB=2∠ACB=2×45°=90°,由∠AOC=150°,易得△OBC是等邊三角形,又由過點C作⊙O的切線交AB的延長線于點D,易求得∠CBD=∠D=75°,繼而證得結論;(2)由(1)可得△AOB是等腰直角三角形,又由⊙O的半徑為 ,即可求得答案.
【考點精析】解答此題的關鍵在于理解三角形的外接圓與外心的相關知識,掌握過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心,以及對切線的性質定理的理解,了解切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.

(1)求這個二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出當x取何值時,y>0?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點之間的距離為|4﹣1|=   ;表示5和﹣2兩點之間的距離為|5﹣(﹣2)|=|5+2|=   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于|m﹣n|,如果表示數(shù)a和﹣2的兩點之間的距離是3,那么a=   

(2)若數(shù)軸上表示數(shù)a的點位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當a=   時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一水池有三個流量相同的注排兩用水管,開一個水管一個小時注排水立方米.假設先開一個進水管注滿半池水,再同時開三個進水管注滿另一半池水;排水時,先用時間開三個水管同時排水,再用時間只開一個水管排水,把池中水排盡,這樣排完一池水所花時間比前面注滿一池水少用個小時,水池的容積是________立方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O的半徑是5cm,PA、PB切⊙O于點A、B兩點,∠PAB=60°.求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個直七棱柱,它的底面邊長都是,側棱長是,觀察這個棱柱,請回答下列問題:

這個七棱柱共有多少個面,它們分別是什么形狀?哪些面的形狀、面積完全相同?側面的面積是多少?由此你可以猜想出棱柱有多少個面?

這個七棱柱一共有多少條棱?它們的長度分別是多少?

這個七棱柱一共有多少個頂點?

通過對棱柱的觀察,你能說出棱柱的頂點數(shù)與的關系及棱的條數(shù)與的關系嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l:y=-x,點A1的坐標為(-3,0).過點A1x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸負半軸于點A2,再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸負半軸于點A3,則點A3的坐標為________,按此作法進行下去,點A2017的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為EBF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案