【題目】初二()班的全體同學(xué)在體測當天沿著同一條路勻速從名校聯(lián)中班級教室出發(fā)到重慶一中本部操場參加體育測試,行進到本部綜合樓時班主任老師發(fā)現(xiàn)未帶相關(guān)體測器材,立即派小趙同學(xué)原路勻速跑回本班教室取器材(取器材時間為分鐘),然后馬上又以原速的去追趕班級隊伍當途中再次經(jīng)過綜合樓時,小趙發(fā)現(xiàn)班級隊伍在自己前面不遠處,于是他又以之前的速度追趕班級隊伍,結(jié)果仍然比班級隊伍晚分鐘到達本部操場如圖所示,設(shè)小趙與本部操場之間距離為),小趙所用時間為),則當小趙途中再次經(jīng)過綜合樓時,班級隊伍(隊伍長度忽略不計)離本部操場的距離是______

【答案】

【解析】

設(shè)小趙同學(xué)的速度為Vm/min,則根據(jù)他所用的時間為15+1.5min列出方程,得出小趙同學(xué)的速度,再求出小趙同學(xué)從出發(fā)到再次經(jīng)過綜合樓所用時間,最后即可求出班級隊伍離本部操場的距離.

:設(shè)小趙同學(xué)的速度為Vm/min,則

解得V=90

經(jīng)檢驗V=90是原方程的解,

∴小趙同學(xué)從出發(fā)到再次經(jīng)過綜合樓所用時間為:

∴班級隊伍離本部操場的距離是:

900-60×8.5=390m

故答案為:390.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點DEBC上,連接AD、AE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知反比例函數(shù)y= 與一次函數(shù)y=x+2的圖象交于點A(﹣3,m)
(1)求反比例函數(shù)的解析式;
(2)如果點M的橫、縱坐標都是不大于3的正整數(shù),求點M在反比例函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB=9,AD=4.E為CD邊上一點,CE=6. 點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設(shè)點P運動的時間為t秒.

(1)當t為何值時,△PAE為直角三角形?

(2)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,﹣3).
(1)求該函數(shù)的解析式;
(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n>0)個單位得到點P′,使點P′恰好在該函數(shù)的圖象上,求n的值和點P沿y軸平移的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。

A. A與D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學(xué)發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:

(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處, 已知BC=10厘米,AB=8厘米,求FCEF的長.

查看答案和解析>>

同步練習(xí)冊答案