【題目】如圖,正方形ABCD的邊長為1,對角線AC、BD交于點O,E是BC延長線上一點,且AC=EC,連接AE交BD于點P.
(1)求∠DAE的度數(shù);
(2)求BP的長.
【答案】(1)求∠DAE=22.5°;(2)BP=1
【解析】
(1)由正方形得到∠ACB=45°,,由AC=EC,根據(jù)等腰三角形的等邊對等角的性質(zhì),及三角形外角的性質(zhì)得到∠E=22.5°,依據(jù)平行線的性質(zhì)即可得到∠DAE的度數(shù);
(2)由正方形得到AB=1,∠DAB=90°,∠DBC=45°,依據(jù)三角形外角的性質(zhì)得到∠APB=∠E+∠DBC=67.5°,而∠BAP=90°-22.5°=67.5°,故而∠BAP=∠APB,依據(jù)三角形等角對等邊的性質(zhì)即可求得BP的長.
解:(1)∵四邊形ABCD的正方形,
∴∠ACB=45°,,
∵AC=EC,
∴∠E=∠EAC,
又∵∠ACB=∠E+∠EAC=45°,
∴∠E=22.5°,
∵,
∴∠DAE=∠E=22.5°;
(2)∵四邊形ABCD是正方形,正方形ABCD的邊長是1,
∴AB=1,∠DAB=90°,∠DBC=45°,
∵∠DAE=22.5°,
∴∠BAP=90°-22.5°=67.5°,∠APB=∠E+∠DBC=22.5°+45°=67.5°,
∴∠BAP=∠APB,
∴BP=AB=1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點P在線段AC上以5cm/s的速度從點A運動到點C,過點P作PD⊥AB于點D,將△APD繞PD的中點旋轉(zhuǎn)180°得到△A′DP,設點P的運動時間為x(s).
(1)當點A′落在邊BC上時,求x的值;
(2)在動點P從點A運動到點C過程中,當x為何值時,△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動點Q與點P同時出發(fā),在線段BC上以5cm/s的速度從點B運動到點C,過點Q作QE⊥AB于點E,將△BQE繞QE的中點旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當直線A′B′與△ABC的一邊垂直時,求線段A′B′的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“圓材埋壁”是我國古代著名的數(shù)學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為( )
A.12寸B.13寸C.24寸D.26寸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中點A(0,3),,過點A作AB的垂線交x軸于點A1,過A1作AA1的垂線交y軸于點A2,過點A2作A1A2的垂線交x軸于點A3……,按此規(guī)律繼續(xù)作下去,直至得到點A2018為止,則點A2018坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與x軸交于A,B兩點(點B在點A左側(cè)),與y軸負半軸相交于點C,且tan∠ABC=3,
(1)求該二次函數(shù)的解析式;
(2)設E是位于第四象限拋物線上的一個動點,過E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)設點P是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,當△PAC面積為整數(shù)時,這樣的△PAC有幾個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市中招體育測試改革,其中籃球和足球作為選考項目,某商店抓住這一商機決定購進一批籃球和足球共200個,這兩種球的進價和售價如下表所示:
籃球 | 足球 | |
進價(元/個) | 180 | 150 |
售價(元/個) | 250 | 200 |
(1)若商店計劃銷售完這批球后能獲利11600元,問籃球和足球應分別購進多少個?
(2)設購進籃球個,獲利為元,求與之間的函數(shù)關系;
(3)若商店計劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請問有哪幾種購球方案,并寫出獲利最大的購球方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com