【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是第三象限的拋物線上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ACD的面積為量求出Sm的函數(shù)關(guān)系式,并確定m為何值時(shí)S有最大值,最大值是多少?

(3)若點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),是否存在點(diǎn)P使得∠APC=90°?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】1y=x2+x+3;(2)m為﹣2時(shí)S有最大值,最大值是6(3)P的坐標(biāo)為(﹣, )或(﹣

【解析】試題分析:(1)、將點(diǎn)A和點(diǎn)B的坐標(biāo)代入解析式,利用待定系數(shù)法求出函數(shù)解析式;(2)、首先求出點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求出直線AC的函數(shù)解析式,過點(diǎn)D D作DEy軸,交AC于點(diǎn)E,設(shè)出點(diǎn)D和點(diǎn)E的坐標(biāo),然后求出DE的長度,根據(jù)面積的計(jì)算公式得出面積的二次函數(shù)解析式,從而得出面積的最大值;(3)、以AC為直徑作圓交拋物線的對(duì)稱軸于P,根據(jù)點(diǎn)A 和點(diǎn)C的坐標(biāo)得出中點(diǎn)的坐標(biāo),求出AC和OP的長度,設(shè)點(diǎn)P的坐標(biāo)為(,y),然后根據(jù)勾股定理求出y的值,得出點(diǎn)P的坐標(biāo).

試題解析:(1)、將A(﹣4,0)、B(﹣l,0)代入y=ax2+bx+3得:,

解得, 故拋物線的函數(shù)解析式為y=x2+x+3;

(2)、令x=0,則y=3, ∴C(0,3),

設(shè)直線AC的解析式為y=mx+n, 代入A(﹣4,0)、C(0,3)得, 解得

AC的解析式為y=x+3;

過D作DEy軸,交AC于點(diǎn)E,設(shè)D(m, m2+m+3),E(m, m+3)(﹣4<m<﹣1), 則DE=m+3﹣(m2+m+3), ∴DE=﹣m2﹣3m,

∴S=DE×4=2(﹣m2﹣3m)=﹣m2﹣6m=﹣(m+2)2+6,

m=﹣2時(shí),S最大=6; 故m為﹣2時(shí)S有最大值,最大值是6.

(3)、存在點(diǎn)P使得∠APC=90°, 以AC為直徑作圓交拋物線的對(duì)稱軸于P,

∵A(﹣4,0)、C(0,3), ∴AC的中點(diǎn)O的坐標(biāo)為(﹣2,),AC==5,

∴OP==, ∵拋物線y=ax2+bx+3與x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),

對(duì)稱軸x==﹣, 設(shè)P(﹣,y), ∴OP2=(2,

(﹣2+2+(﹣y)2=(2解得y=±,

P的坐標(biāo)為(﹣,)或(﹣,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

某商店經(jīng)銷《超能陸戰(zhàn)隊(duì)》超萌“小白”(圖1)玩具,“小白”玩具每個(gè)進(jìn)價(jià)60元.為進(jìn)行促銷,商店制定如下“優(yōu)惠”方案:如果一次銷售數(shù)量不超過10個(gè),則銷售單價(jià)為100元/個(gè);如果一次銷售數(shù)量超過10個(gè),每增加一個(gè),所有“小白”玩具銷售單價(jià)降低1元/個(gè),但單價(jià)不得低于80元/個(gè).一次銷售“小白”玩具的單價(jià)y(元/個(gè))與銷售數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖2所示.

(1)求m的值并解釋射線BC所表示的實(shí)際意義;

(2)寫出該店當(dāng)一次銷售x個(gè)時(shí),所獲利潤w(元)與x(個(gè))之間的函數(shù)關(guān)系式;

(3)店長經(jīng)過一段時(shí)間的銷售發(fā)現(xiàn):即并不是銷量越大利潤越大(比如,賣25個(gè)賺的錢反而比賣30個(gè)賺的錢多).為了不出現(xiàn)這種現(xiàn)象,在其他條件不變的情況下,店長應(yīng)把原來的最低單價(jià)80(元/個(gè))至少提高到多少元/個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABCA點(diǎn)逆時(shí)針方向旋轉(zhuǎn)60°得到的,求線段 B′C的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.

請結(jié)合以上信息解答下列問題:

(1)m=

(2)請補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;

(4)已知該校共有1200名學(xué)生,請你估計(jì)該校約有 名學(xué)生最喜愛足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個(gè)問題:如圖1,在正三角形ABC內(nèi)有一點(diǎn)P,且PA=3,PB=4,PC=5,求APB的度數(shù).

小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識(shí)構(gòu)造AP′C,連接PP′,得到兩個(gè)特殊的三角形,從而將問題解決.

請你回答:圖1中APB的度數(shù)等于   

參考小偉同學(xué)思考問題的方法,解決下列問題:

(1)如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PB=1PD=,則APB的度數(shù)等于   ,正方形的邊長為   

(2)如圖4,在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2,PB=1,PF=,則APB的度數(shù)等于   ,正六邊形的邊長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點(diǎn)A1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)BC.則以下結(jié)論:

①無論x取何值,y2的值總是正數(shù);

a=1;

③當(dāng)x=0時(shí),y2﹣y1=4;

2AB=3AC

其中正確結(jié)論是( 。

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,P為邊AB上一點(diǎn).

(1)如圖l,若∠ACP=∠B,求證:AC2 =AP·AB;

(2)若M為CP的中點(diǎn),AC=2,如圖2,若∠PBM=∠ACP,AB=3,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)x2﹣x﹣1=0;

(2)x2﹣2x=2x+1;

(3)x(x﹣2)﹣3x2=﹣1;

(4)(x+3)2=(1﹣2x)2

查看答案和解析>>

同步練習(xí)冊答案