【題目】如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個動點,滿足AE=DF.連接CF交BD于點G,連接BE交AG于點H.若正方形的邊長為2,則線段DH長度的最小值是 .
【答案】 ﹣1
【解析】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG, 在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠1=∠2,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠2=∠3,
∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°﹣90°=90°,
取AB的中點O,連接OH、OD,
則OH=AO= AB=1,
在Rt△AOD中,OD= = = ,
根據(jù)三角形的三邊關(guān)系,OH+DH>OD,
∴當(dāng)O、D、H三點共線時,DH的長度最小,
最小值=OD﹣OH= ﹣1.
(解法二:可以理解為點H是在Rt△AHB,AB直徑的半圓 上運(yùn)動當(dāng)O、H、D三點共線時,DH長度最。
故答案為: ﹣1.
根據(jù)正方形的性質(zhì)可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“邊角邊”證明△ABE和△DCF全等,根據(jù)全等三角形對應(yīng)角相等可得∠1=∠2,利用“SAS”證明△ADG和△CDG全等,根據(jù)全等三角形對應(yīng)角相等可得∠2=∠3,從而得到∠1=∠3,然后求出∠AHB=90°,取AB的中點O,連接OH、OD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH= AB=1,利用勾股定理列式求出OD,然后根據(jù)三角形的三邊關(guān)系可知當(dāng)O、D、H三點共線時,DH的長度最小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某班學(xué)生的一次數(shù)學(xué)成績進(jìn)行統(tǒng)計,各分?jǐn)?shù)段的人數(shù)如圖所示,根據(jù)圖示信息填空:
(1)該班有學(xué)生________人;
(2)成績在69.5~79.5之間的人數(shù)為________人;
(3)79.5分以上的為優(yōu)秀,該班的優(yōu)秀率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為4的正△ABC中,點P以每秒1cm的速度從點A出發(fā),沿折線AB﹣BC運(yùn)動,到點C停止.過點P作PD⊥AC,垂足為D,PD的長度y(cm)與點P的運(yùn)動時間x(秒)的函數(shù)圖象如圖2所示.當(dāng)點P運(yùn)動5.5秒時,PD的長是( )
A.cm
B.cm
C.2 cm
D.3 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O, .
(1)如果,那么根據(jù)___________,可得=__________度.
(2)如果,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有【 】個.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m1=,m2=﹣x+3.
(1)若m1與m2互為相反數(shù),求x的值;
(2)若m1是m2的2倍,求x的值;
(3)若m2比m1小1,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD,AB=9,AD=4. E為CD邊上一點,CE=6.
(1)求AE的長.
(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運(yùn)動,連接PE. 設(shè)點P運(yùn)動的時間為t秒,則當(dāng)t為何值時,△PAE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在“課外新世界”中遇到這樣一道題:如圖1,已知∠AOB=30°與線段a,你能作出邊長為a的等邊三角形△COD嗎?小明的做法是:如圖2,以O(shè)為圓心,線段a為半徑畫弧,分別交OA,OB于點M,N,在弧MN上任取一點P,以點M為圓心,MP為半徑畫弧,交弧CD于點C,同理以點N為圓心,N P為半徑畫弧,交弧CD于點D,連結(jié)CD,即△COD就是所求的等邊三角形.
(1)請寫出小明這種做法的理由;
(2)在此基礎(chǔ)上請你作如下操作和探究(如圖3):連結(jié)MN,MN是否平行于CD?為什么?
(3)點P在什么位置時,MN∥CD?請用小明的作圖方法在圖1中作出圖形(不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b,c滿足(a-)2++|c-2|=0.
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長和面積;若不能構(gòu)成三角形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com