【題目】如圖,P是⊙O外的一點,PA、PB是⊙O的兩條切線,A、B是切點,POAB于點F,延長BO交⊙O于點C,交PA的延長交于點Q,連結(jié)AC.

(1)求證:ACPO;

(2)設(shè)DPB的中點,QDAB于點E,若⊙O的半徑為3,CQ=2,求的值.

【答案】(1)證明見解析;(2)

【解析】1)根據(jù)切線長定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三線合一的性質(zhì)得出PO⊥AB.根據(jù)圓周角定理得出AC⊥AB,進(jìn)而得到AC∥PO;

(2)連結(jié)OA、DF.先用勾股定理計算出AQ=4,再計算出PA=PB=6,利用切線長定理可得到F點為AB的中點,易得DF為△BAP的中位線,則DF=PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以,設(shè)AE=4t,F(xiàn)E=3t,則AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后計算

1)證明:∵PA、PB是⊙O的兩條切線,AB是切點,

PA=PB,且PO平分∠BPA

POAB

BC是直徑,

∴∠CAB=90°

ACAB,

ACPO;

2)連結(jié)OA、DF,如圖,

PA、PB是⊙O的兩條切線,A、B是切點,

∴∠OAQ=PBQ=90°

RtOAQ中,OA=OC=3,

OQ=5

QA2+OA2=OQ2,得QA=4

RtPBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=PB+42,解得PB=6,

PA=PB=6

OPAB

BF=AF=AB

又∵DPB的中點,

DFAPDF=PA=3,

DFE∽△QEA,

設(shè)AE=4t,FE=3t,則AF=AE+FE=7t,

BE=BF+FE=AF+FE=7t+3t=10t,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個地下車站,2017年6月30日開通運營,標(biāo)志著吉林省正式邁進(jìn)“地鐵時代”,15個站點如圖所示.

某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到A站下車時,本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向為正,當(dāng)天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8

(1)請通過計算說明A站是哪一站?

(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩棟居民樓之間的距離CD=30米,樓ACBD均為10層,每層樓高3米.

(1)上午某時刻,太陽光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?

(2)當(dāng)太陽光線與水平面的夾角為多少度時,B樓的影子剛好落在A樓的底部.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點F的坐標(biāo)為(0,10).點E的坐標(biāo)為(20,0),直線l1經(jīng)過點F和點E,直線l1與直線l2 、y=x相交于點P.

(1)求直線l1的表達(dá)式和點P的坐標(biāo);

(2)矩形ABCD的邊ABy軸的正半軸上,點A與點F重合,點B在線段OF上,邊AD平行于x 軸,且AB=6,AD=9,將矩形ABCD沿射線FE的方向平移,邊AD始終與x 軸平行.已知矩形ABCD以每秒個單位的速度勻速移動(點A移動到點E時止移動),設(shè)移動時間為t秒(t>0).

①矩形ABCD在移動過程中,B、C、D三點中有且只有一個頂點落在直線l1l2上,請直接寫出此時t的值;

②若矩形ABCD在移動的過程中,直線CD交直線l1于點N,交直線l2于點M.當(dāng)PMN的面積等于18時,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=(k﹣1)x+k+1和直線l2:y=kx+k+2,其中k為不小于2的自然數(shù).

(1)當(dāng)k=2時,直線l1、l2x軸圍成的三角形的面積S2=______

(2)當(dāng)k=2、3、4,……,2018時,設(shè)直線l1、l2x軸圍成的三角形的面積分別為S2,S3,S4,……,S2018,則S2+S3+S4+……+S2018=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點E是線段AB上的動點(不與端點重合),點F是線段AC上的動點,連接CE、EF,若在點E、點F的運動過程中,始終保證∠CEF=∠B.當(dāng)以點C為圓心,以CF為半徑的圓與AB相切時,則BE的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、E分別在ACDF上,AF分別交BDCE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的三個方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個方程有實根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F=_______度.

查看答案和解析>>

同步練習(xí)冊答案