【題目】如圖,經(jīng)過拋物線y=x2+x﹣2與坐標(biāo)軸交點的圓與拋物線另交于點D,與y軸另交于點E,則∠BED=_____.
【答案】45°
【解析】
連接AD,作DM⊥AB于M,根據(jù)拋物線的解析式求得與坐標(biāo)軸的交點坐標(biāo),進而求得D的坐標(biāo),即可得到AM=DM=2,從而求得∠BAD=45°,根據(jù)圓周角定理即可求得∠BED的度數(shù).
解:連接AD,作DM⊥AB于M,
在拋物線y=x2+x﹣2中,令y=0,則x2+x﹣2=0,解得x=﹣2或x=1,
∴A(1,0),B(﹣2,0),
令x=0,則y=﹣2,
∴C(0,﹣2),
∴拋物線的對稱軸為直線x=,
∴D(﹣1,﹣2),
∴M(﹣1,0),
∵DM=2,AM=2,
∴∠BAD=∠ADM=45°,
∵∠BED=∠BAD,
∴∠BED=45°.
故答案為45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-ax-2a2(a為常數(shù),且a≠0).
(1)證明該二次函數(shù)的圖象與x軸的正半軸、負(fù)半軸各有一個交點;
(2)若該二次函數(shù)的圖象與y軸的交點坐標(biāo)為(0,-2),試求該函數(shù)圖象的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線圖象的一部分,頂點,與軸的一個交點,直線與拋物線交于,兩點,下列結(jié)論:
①;
②;
③當(dāng)時,有;
④方程有兩個相等的實數(shù)根;
⑤代數(shù)式的值是6.
其中正確的序號有( 。
A.①③④B.②④C.③⑤D.②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=x﹣15與x軸、y軸分別相交于點A和點B.拋物線經(jīng)過A、B兩點.
(1)求這個拋物線的解析式;
(2)若這拋物線的頂點為點D,與x軸的另一個交點為點C.對稱軸與x軸交于點H,求△DAC的面積;
(3)若點E是線段AD的中點.CE與DH交于點G,點P在y軸的正半軸上,△POH是否能夠與△CGH相似?如果能,請求出點P的坐標(biāo);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式.
(2)若點Q是對稱軸上一動點,當(dāng)OQ+BQ最小時,求點Q的坐標(biāo).
(3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB面積的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綦江中學(xué)新校區(qū)建設(shè)正按計劃順利推進,其中有一塊矩形地面準(zhǔn)備用同樣規(guī)格的黑、白兩色的正方形瓷磚按如圖所示的設(shè)計進行鋪設(shè),請觀察下列圖形并解答有關(guān)問題.
第n個圖中共有塊瓷磚用含n的代數(shù)式表示;
按上述鋪設(shè)方案,鋪這塊矩形地面共用了506塊瓷磚,求此時n的值;
是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中兩條直線OC⊥BC,垂足為C,其OC=2cm,∠COB=60°,反比例函數(shù)y=的圖象過點C.
(1)求:反比例函數(shù)表達式和點B的坐標(biāo).
(2)若現(xiàn)有長為1cm的線段MN在線段OB上沿OB方向以1cm/s的速度向點B運動(運動前點M與點O重合,N到點B停止運動),過M、N作OB的垂線分別交直線OC、BC于P、Q兩點,線段MN運動的時間為ts.
①若△OMP的面積為S.求出當(dāng)0<t≤1時,S與t的函數(shù)關(guān)系式.
②線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若可能,直接寫出此時t的值;若不可能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?” .其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B出有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,求正方形城池的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com