【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過A,B,C三點(diǎn)作拋物線.

(1)求拋物線的解析式;

(2)點(diǎn)EAC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

第三問改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PCD的面積是BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).

【答案】(1)y=x2x﹣3;(2)直線BD的解析式為y=x﹣9;(3)符合條件的點(diǎn)P有兩個(gè):P1,),P2(14,25).

【解析】分析:(1)已知了A、B兩點(diǎn)的坐標(biāo)即可得出OA、OB的長,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的長,即可得出C點(diǎn)的坐標(biāo).然后用待定系數(shù)法即可求出拋物線的解析式;

(2)本題的關(guān)鍵是得出D點(diǎn)的坐標(biāo),CD平分∠BCE,如果連接O′D,那么根據(jù)圓周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐標(biāo)為(4,-5).根據(jù)B、D兩點(diǎn)的坐標(biāo)即可用待定系數(shù)法求出直線BD的解析式;

(3)本題要分兩種情況進(jìn)行討論:

①過DDP∥BC,交D點(diǎn)右側(cè)的拋物線于P,此時(shí)∠PDB=∠CBD,可先用待定系數(shù)法求出直線BC的解析式,然后根據(jù)BCDP平行,那么直線DP的斜率與直線BC的斜率相同,因此可根據(jù)D的坐標(biāo)求出DP的解析式,然后聯(lián)立直線DP的解析式和拋物線的解析式即可求出交點(diǎn)坐標(biāo),然后將不合題意的舍去即可得出符合條件的P點(diǎn).

②同①的思路類似,先作與∠CBD相等的角:在O′B上取一點(diǎn)N,使BN=BM.可通過證△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一樣,先求直線DN的解析式,進(jìn)而可求出其與拋物線的交點(diǎn)即P點(diǎn)的坐標(biāo).

綜上所述可求出符合條件的P點(diǎn)的值.

詳解:(1)∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,

∴∠OCA+OCB=90°,

又∵∠OCB+OBC=90°,

∴∠OCA=OBC,

又∵∠AOC=COB=90°,

∴△AOC∽△COB,

又∵A(﹣1,0),B(9,0),

,

解得OC=3(負(fù)值舍去).

C(0,﹣3),

故設(shè)拋物線解析式為y=a(x+1)(x﹣9),

∴﹣3=a0+1)(09),解得a=,

∴二次函數(shù)的解析式為y=(x+1)(x﹣9),

y=x2x﹣3.

(2)ABO′的直徑,且A(﹣1,0),B(9,0),

OO′=4,O′(4,0),

∵點(diǎn)EAC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,

∴∠BCD=BCE=×90°=45°,

連接O′DBC于點(diǎn)M,

則∠BO′D=2BCD=2×45°=90°,OO′=4,O′D=AB=5.

O′Dx

D(4,﹣5).

∴設(shè)直線BD的解析式為y=kx+b(k≠0)

解得

∴直線BD的解析式為y=x﹣9.

(3)假設(shè)在拋物線上存在點(diǎn)P,使得∠PDB=CBD,

設(shè)射線DP交⊙O′于點(diǎn)Q,則

分兩種情況(如圖所示):

①∵O′(4,0),D(4,﹣5),B(9,0),C(0,﹣3).

∴把點(diǎn)C、D繞點(diǎn)O′逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)D與點(diǎn)B重合,則點(diǎn)C與點(diǎn)Q1重合,

因此,點(diǎn)Q1(7,﹣4)符合,

D(4,﹣5),Q1(7,﹣4),

∴用待定系數(shù)法可求出直線DQ1解析式為y=x﹣

解方程組

∴點(diǎn)P1坐標(biāo)為(,),坐標(biāo)為(,)不符合題意,舍去.

②∵Q1(7,﹣4),

∴點(diǎn)Q1關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為Q2(7,4)也符合

D(4,﹣5),Q2(7,4).

∴用待定系數(shù)法可求出直線DQ2解析式為y=3x﹣17.

解方程組,

∴點(diǎn)P2坐標(biāo)為(14,25),坐標(biāo)為(3,﹣8)不符合題意,舍去.

∴符合條件的點(diǎn)P有兩個(gè):P1,),P2(14,25).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,過點(diǎn)A引射線,交邊于點(diǎn)HH不與點(diǎn)D重合).通過翻折,使點(diǎn)B落在射線上的點(diǎn)G處,折痕E,連接E,G并延長F

1)如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),的大小關(guān)系是_____________________三角形.

2)如圖2,當(dāng)點(diǎn)H為邊上任意一點(diǎn)時(shí)(點(diǎn)H與點(diǎn)C不重合).連接,猜想的大小關(guān)系,并證明你的結(jié)論.

3)在圖2,當(dāng),時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M、N直線l上兩點(diǎn),MN20O、P為線段MN上兩動(dòng)點(diǎn),過O、P分別作長方形OABC與長方形PDEF(如圖),其中,兩邊OAPF分別在直線l上,圖形在直線l的同側(cè),且OAPF4,CODP3,動(dòng)點(diǎn)O從點(diǎn)M出發(fā),以1單位/秒的速度向右運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)P從點(diǎn)N出發(fā),以2單位/秒的速度向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)若t2.5秒,求點(diǎn)A與點(diǎn)F的距離;

2)求當(dāng)t為何值時(shí),兩長方形重疊部分為正方形;

3)運(yùn)動(dòng)過程中,在兩長方形沒有重疊部分前,若能使線段ABBC、AF的長構(gòu)成三角形,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個(gè)結(jié)論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E.過點(diǎn)DDFACAC于點(diǎn)F.

(1)求證:DF是⊙O的切線;

(2)若⊙O的半徑為8,CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿ABC的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿CAB的方向移動(dòng),在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:

1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QAAP

2)如圖2,點(diǎn)QCA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的

3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長度等于線段BP的長的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀后,請(qǐng)解答.

已知,符合表示大于或等于的最小正整數(shù),如,

填空:________,________,若,則的取值范圍是________

某市的出租車收費(fèi)標(biāo)準(zhǔn)規(guī)定如下:以內(nèi)(包括)收費(fèi)元,超過的每超過,加收(不足的按計(jì)算).用表示所行的千米數(shù),表示行應(yīng)付車費(fèi),則乘車費(fèi)可按如下的公式計(jì)算:當(dāng)(單位:)時(shí),();當(dāng)(單位:)時(shí),().某乘客乘車后付費(fèi)元,該乘客所行的路程的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某果農(nóng)的蘋果園有蘋果樹60棵,由于提高了管理水平,可以通過補(bǔ)種一些蘋果樹的方法來提高總產(chǎn)量.但如果多種樹,那么樹之間的距離和每棵樹所受的光照就會(huì)減少,單棵樹的產(chǎn)量也隨之降低.已知在一定范圍內(nèi),該果園每棵果樹產(chǎn)果y(千克)與補(bǔ)種果樹x(棵)之間的函數(shù)關(guān)系如圖所示.若超過這個(gè)范圍,則會(huì)嚴(yán)重影響果樹的產(chǎn)量.

(1)求yx之間的函數(shù)關(guān)系式;

(2)在這個(gè)范圍內(nèi),當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

(3)若該果農(nóng)的蘋果以3/千克的價(jià)格售出,不計(jì)其他成本,按(2)的方式可以多收入多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x單位:小時(shí)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)

3請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案