【題目】(1)如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,求∠FEB的度數(shù).

(2)如圖,A地和B地都是海上觀測站,從A地發(fā)現(xiàn)它的北偏東60方向有一艘船P,同時,從B地發(fā)現(xiàn)這艘船P在它北偏東30方向.試在圖中畫出這艘船P的位置.

【答案】(1)120°(2)見解析

【解析】

(1) 根據(jù)將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,可以求得∠FEA∠FEA′、∠BEA′之間的關系,從而可以得到∠FEB的度數(shù).

(2)方位角通常以正北、正南方向為基準線,配以偏東或偏西的角度描述具體的方向,表示兩個方向的射線的交點,就是船的位置.

(1)由折疊可知,∠FEA=FEA′,

EA′平分∠FEB,∴∠FEA′=BEA′

∴∠FEA′=BEA′=FEA .

∵∠FEA′+BEA′+FEA=180 .

3FEA′=180 , FEA′=60 .

∴∠FEB=2FEA′=120.

(2)畫圖.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點,已知點B與點D關于坐標原點O成中心對稱,且點B的坐標為其中

四邊形ABCD的是______填寫四邊形ABCD的形狀

當點A的坐標為時,四邊形ABCD是矩形,求m,n的值.

試探究:隨著km的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過程中,汽車離出發(fā)地的距離y(km)和行駛時間x(h)之間的函數(shù)關系,根據(jù)圖中提供的信息,給出下列說法:汽車共行駛了120km;汽車在行駛途中停留了0.5h;汽車在整個行駛過程中的平均速度為km/h;汽車自出發(fā)后3h~4.5h之間行駛的速度在逐漸減。渲姓_的說法是 .(填上所有正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分數(shù)的基本性質(zhì))

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計算依據(jù)有:去括號法則.等式性質(zhì)一.③等式性質(zhì)二.合并同類項法則.請選擇排序完全正確的一個選項( 。

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一矩形紙片OABC放在平面直角坐標系中,,,.動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相同的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設點P的運動時間為t(秒).

(1)OP =____________, OQ =____________;(用含t的代數(shù)式表示)

(2)當時,將△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處.

①求點D的坐標;

②如果直線y = kx + b與直線AD平行,那么當直線y = kx + b與四邊形PABD有交點時,求b 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】右圖為手的示意圖,在各個手指間標記字母A、BC、D.請你按圖中箭頭所指方向(即ABCDCBABC…的方式)從A開始數(shù)連續(xù)的正整數(shù)1,2,3,4…,當數(shù)到12時,對應的字母是 ;當字母C201次出現(xiàn)時,恰好數(shù)到的數(shù)是 ;當字母C2n+1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是 (用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板放在同一平面內(nèi),使直角頂點重合于點O

(1)如圖①,若∠AOB=155°,求∠AOD、BOC、DOC的度數(shù).

(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關系?∠AOB與∠DOC有何關系?直接寫出你發(fā)現(xiàn)的結論.

(3)如圖②,當AOCBOD沒有重合部分時,(2)中你發(fā)現(xiàn)的結論是否還仍然成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,C=30°,AC=12cm,點E從點A出發(fā)沿AB以每秒lcm的速度向點B運動,同時點D從點C出發(fā)沿CA以每秒2cm的速度向點A運動,運動時間為t秒(0<t<6),過點DDFBC于點F.

(I)試用含t的式子表示AE、AD、DF的長;

(Ⅱ)如圖①,連接EF,求證:四邊形AEFD是平行四邊形;

(Ⅲ)如圖②,連接DE,當t為何值時,四邊形EBFD是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:點P內(nèi)一點.

求證:;

PB平分,PC平分,求的度數(shù).

查看答案和解析>>

同步練習冊答案