如圖,⊙O的半徑為2,直線PA、PB為⊙O的切線,A、B為切點(diǎn),若PA⊥PB,則OP的長(zhǎng)為( )

A.
B.4
C.
D.2
【答案】分析:連接OA、OB,則OA⊥AP,OB⊥PB;由HL定理可知Rt△PAO≌Rt△PBO,求出∠APO的度數(shù),根據(jù)三角函數(shù)值的定義即可求出OP的長(zhǎng),
解答:解:連接OA、OB,則OA⊥AP,OB⊥PB,OA=OB=2,
在Rt△PAO與Rt△PBO中,
∵OP=OP,OA=OB,
∴Rt△PAO≌Rt△PBO,
∴∠APO=∠BPO=∠APB;
∵PA⊥PB,
∴∠APB=90°,
∴∠APO=45°,
在Rt△PAO中,OP===2
故選C.
點(diǎn)評(píng):此題比較簡(jiǎn)單,解答此題的關(guān)鍵是連接OA、OB,根據(jù)切線的性質(zhì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案