【題目】如圖,已知A、O、B三點(diǎn)在同一條直線上,OD平分AOC,OE平分BOC

(1)若BOC=62°,求DOE的度數(shù);

(2)若BOC=a°,求DOE的度數(shù);

(3)圖中是否有互余的角?若有請(qǐng)寫(xiě)出所有互余的角.

【答案】(1)90°;(2)90°;(3)DOACOE互余;DOABOE互余;DOCCOE互余;DOCBOE互余.

【解析】

試題分析:(1)OD平分AOC,OE平分BOC,得出DOE=BOC+COA),代入數(shù)據(jù)求得問(wèn)題;

(2)利用(1)的結(jié)論,把BOC=a°,代入數(shù)據(jù)求得問(wèn)題;

(3)根據(jù)(1)(2)找出互余的角即可.

解:(1)OD平分AOC,OE平分BOC,

∴∠DOC=AOC,COE=BOC

∴∠DOE=DOC+COE=BOC+COA)=×(62°+180°﹣62°)=90°;

(2)DOEBOC+COA)=×(a°+180°﹣a°)=90°;

(3)DOACOE互余;DOABOE互余;DOCCOE互余;DOCBOE互余.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形紙片ABCD,點(diǎn)E,F分別在邊AB,CD上,連接EF,將∠BEF對(duì)折 B落在直線EF上的點(diǎn)B處,得折痕EM;將∠AEF對(duì)折,點(diǎn)A落在直線EF上的點(diǎn)A得折痕EN,若∠BEM62°15′ ,則∠AEN_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一點(diǎn),直線BP與y軸相交于點(diǎn)C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當(dāng)點(diǎn)P是線段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) 點(diǎn)P的坐標(biāo)為(,);(3) .

【解析】分析:(1)將點(diǎn)A、B代入拋物線y=-x2+ax+b,解得a,b可得解析式;

(2)由C點(diǎn)橫坐標(biāo)為0可得P點(diǎn)橫坐標(biāo),將P點(diǎn)橫坐標(biāo)代入(1)中拋物線解析式,易得P點(diǎn)坐標(biāo);

(3)由P點(diǎn)的坐標(biāo)可得C點(diǎn)坐標(biāo),A、B、C的坐標(biāo),利用勾股定理可得BC長(zhǎng),利用sin∠OCB=可得結(jié)果.

詳解:(1)將點(diǎn)A、B代入拋物線y=﹣x2+ax+b可得,

,

解得,a=4,b=﹣3,

∴拋物線的解析式為:y=﹣x2+4x﹣3;

(2)∵點(diǎn)Cy軸上,

所以C點(diǎn)橫坐標(biāo)x=0,

∵點(diǎn)P是線段BC的中點(diǎn),

∴點(diǎn)P橫坐標(biāo)xP==

∵點(diǎn)P在拋物線y=﹣x2+4x﹣3上,

yP=﹣3=

∴點(diǎn)P的坐標(biāo)為(,);

(3)∵點(diǎn)P的坐標(biāo)為(,),點(diǎn)P是線段BC的中點(diǎn),

∴點(diǎn)C的縱坐標(biāo)為﹣0=

∴點(diǎn)C的坐標(biāo)為(0,),

BC==,

sinOCB===

點(diǎn)睛:本題主要考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)圖像與性質(zhì),解直角三角形,勾股定理,利用中點(diǎn)求得點(diǎn)P的坐標(biāo)是解答此題的關(guān)鍵.

型】解答
結(jié)束】
24

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過(guò)點(diǎn)B作⊙O的切線BD,與CA的延長(zhǎng)線交于點(diǎn)D,與半徑AO的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線AF,與直徑BC的延長(zhǎng)線交于點(diǎn)F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長(zhǎng);

(3)連接EF,求證:EF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)ba、b滿(mǎn)足|a20|+b+1020,O是數(shù)軸原點(diǎn),點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)點(diǎn)A表示的數(shù)為   ,點(diǎn)B表示的數(shù)為   

2t為何值時(shí),BQ2AQ

3)若在點(diǎn)Q從點(diǎn)B出發(fā)的同時(shí),點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度一直沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),而點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),立即改變運(yùn)動(dòng)方向,沿?cái)?shù)軸的負(fù)方向運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),在點(diǎn)Q的整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在合適的t值,使得PQ6?若存在,求出所有符合條件的t值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)為培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級(jí)準(zhǔn)備開(kāi)設(shè)神奇魔方、魅力數(shù)獨(dú)、數(shù)學(xué)故事趣題巧解四門(mén)選修課(每位學(xué)生必須且只選其中一門(mén))

(1)學(xué)校對(duì)七年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,得到如圖所示的統(tǒng)計(jì)圖,根據(jù)該統(tǒng)計(jì)圖,請(qǐng)估計(jì)該校七年級(jí)480名學(xué)生選數(shù)學(xué)故事的人數(shù)。

(2)學(xué)校將選數(shù)學(xué)故事的學(xué)生分成人數(shù)相等的A,B,C三個(gè)班,小聰、小慧都選擇了數(shù)學(xué)故事,已知小聰不在A班,求他和小慧被分到同一個(gè)班的概率(要求列表或畫(huà)樹(shù)狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0)的圖象如圖所示,下列結(jié)論:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正確的結(jié)論有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O;以ABAO為鄰邊做平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以ABAO1為鄰邊做平行四邊形AO1C2B;…依此類(lèi)推,則平行四邊形AO4C5B的面積為( )

A. cm2 B. cm2 C. cm2 D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某校為了創(chuàng)建書(shū)香校園,去年購(gòu)進(jìn)一批圖書(shū).經(jīng)了解,科普書(shū)的單價(jià)比文學(xué)書(shū)的單價(jià)多4元,用12000元購(gòu)進(jìn)的科普書(shū)與用8000元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)相等.

1)文學(xué)書(shū)和科普書(shū)的單價(jià)各多少錢(qián)?

2)今年文學(xué)書(shū)和科普書(shū)的單價(jià)和去年相比保持不變,該校打算用10000元再購(gòu)進(jìn)一批文學(xué)書(shū)和科普書(shū),問(wèn)購(gòu)進(jìn)文學(xué)書(shū)550本后至多還能購(gòu)進(jìn)多少本科普書(shū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

1

2.

查看答案和解析>>

同步練習(xí)冊(cè)答案