【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0).
(1)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B(m,e),C(3﹣m,e)且對(duì)任意實(shí)數(shù)x,函數(shù)值y都不小于﹣.
①求此時(shí)二次函數(shù)的解析式;
②若次函數(shù)與y軸交于點(diǎn)D,在對(duì)稱(chēng)軸上存在一點(diǎn)P,使得PA+PD有最小值,求點(diǎn)P坐標(biāo)及PA+PD的最小值.
【答案】(1)y=(x+1)2-4,當(dāng)x=-1時(shí),y最小值為-4;(2)①y=x2﹣3x+2,②存在,P(,),2
【解析】
(1)利用待定系數(shù)法以及配方法即可解決問(wèn)題.
(2)①首先求出b、c(用a表示),想辦法列出不等式即可解決問(wèn)題.
②根據(jù)解析式求得對(duì)稱(chēng)軸,然后根據(jù)對(duì)稱(chēng)性求得A的對(duì)稱(chēng)點(diǎn)的坐標(biāo),連接A′D交拋物線(xiàn)的對(duì)稱(chēng)軸與點(diǎn)P.此時(shí)PA+PD=A′D,則PA+PD最。
解:(1)將b=2,c=﹣3代入得:y=ax2+2x﹣3.
將點(diǎn)A(1,0)代入y=ax2+2x﹣3,得a+2﹣3=0,
∴a=1.
∴y=x2+2x﹣3,
∵y=(x+1)2﹣4,
∴當(dāng)x=﹣1時(shí),y最小值為﹣4.
(2)①由題意可知:對(duì)稱(chēng)軸.
∴,
∴b=﹣3a,又∵a+b+c=0,
∴c=2a,
∴y=ax2﹣3ax+2a
頂點(diǎn)縱坐標(biāo)為,
∵函數(shù)值y不小于﹣
∴a>0,且,
∴a2﹣2a+1≤0,
∴(a﹣1)2≤0,
∵(a﹣1)2≥0,
∴a﹣1=0,
∴a=1.
∴拋物線(xiàn)的解析式為y=x2﹣3x+2;
②如圖所示:
求得A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo),連接A′D交拋物線(xiàn)的對(duì)稱(chēng)軸與點(diǎn)P.此時(shí)PA+PD=A′D,則PA+PD最小,
∵y=x2﹣3x+2=(x﹣)2﹣ ,
∴對(duì)稱(chēng)軸為直線(xiàn)x=,
∴A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A′(2,0),
由y=x2﹣3x+2可知D(0,2),
設(shè)直線(xiàn)A′D的解析式為y=kx+n,
∴解得
∴直線(xiàn)A′D的解析式為y=﹣x+2,
把x=代入得,y=,
∴P(,),
∵,
∴PA+PD的最小值為2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家計(jì)劃2035年前實(shí)施新能源汽車(chē),某公司為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,決定對(duì)近期研發(fā)出的一種新型能源產(chǎn)品進(jìn)行降價(jià)促銷(xiāo).根據(jù)市場(chǎng)調(diào)查:這種新型能源產(chǎn)品銷(xiāo)售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷(xiāo)售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)新型能源產(chǎn)品的成本為100元.
問(wèn):(1)設(shè)該產(chǎn)品的銷(xiāo)售單價(jià)為元,每天的利潤(rùn)為元.則_________(用含的代數(shù)式表示)
(2)這種新型能源產(chǎn)品降價(jià)后的銷(xiāo)售單價(jià)為多少元時(shí),公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為B(3,4)、A(﹣3,2)、C(1,0),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度.
(1)畫(huà)出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格上畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,點(diǎn)C2的坐標(biāo)是 ;(畫(huà)出圖形)
(3)若M(a,b)為線(xiàn)段AC上任一點(diǎn),寫(xiě)出點(diǎn)M的對(duì)應(yīng)點(diǎn)M2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,BD平分∠ABC,過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若DC=2,AC=4,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點(diǎn)O在邊AB上,且⊙O經(jīng)過(guò)B、D兩點(diǎn);并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線(xiàn)BC上(異于點(diǎn)B、C),直線(xiàn)AP與對(duì)角線(xiàn)BD及射線(xiàn)DC分別交于點(diǎn)F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點(diǎn)P在線(xiàn)段BC上,過(guò)點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說(shuō)明理由;
②當(dāng)直線(xiàn)BD與⊙M相切時(shí),直接寫(xiě)出PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙0的直徑,點(diǎn)C在⊙0上,D是中點(diǎn),若∠BAC=70°,求∠C.
下面是小雯的解法,請(qǐng)幫他補(bǔ)充完整:
解:在⊙0中,
∵D是的中點(diǎn)
∴BD=CD.
∴∠1=∠2( )(填推理的依據(jù)).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據(jù)).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個(gè)點(diǎn)都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據(jù)).
∴∠C=180°-∠B= (填計(jì)算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線(xiàn),過(guò)點(diǎn)A作AE⊥AD,交BD的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com