【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過(guò)點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)連接DE,OD.利用弦切角定理,直徑所對(duì)的圓周角是直角,等角的余角相等證明∠DAO=∠CAD,進(jìn)而得出結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)得到∠B=∠BAC=45°,由BC相切⊙O于點(diǎn)D,得到∠ODB=90°,求得OD=BD,∠BOD=45°,設(shè)BD=x,則OD=OA=x,OB=x,根據(jù)勾股定理得到BD=OD=,于是得到結(jié)論.
試題解析:解:(1)證明:連接DE,OD.
∵BC相切⊙O于點(diǎn)D,∴∠CDA=∠AED,∵AE為直徑,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;
(2)∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°,∵BC相切⊙O于點(diǎn)D,∴∠ODB=90°,∴OD=BD,∴∠BOD=45°,設(shè)BD=x,則OD=OA=x,OB=x,∴BC=AC=x+1,∵AC2+BC2=AB2,∴2(x+1)2=(x+x)2,∴x=,∴BD=OD=,∴圖中陰影部分的面積=S△BOD﹣S扇形DOE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,E 為 BC 上一點(diǎn),以 CE 為直徑作⊙O 恰好經(jīng)過(guò) A、C 兩點(diǎn), PF⊥BC 交 BC 于點(diǎn) G,交 AC 于點(diǎn) F.
(1)求證:AB 是⊙O 的切線;
(2)如果 CF =2,CP =3,求⊙O 的直徑 EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師在黑板上出了一道解方程的題,小明馬上舉手,要求到黑板上做,他是這樣做的:
……………… …①
…………………… …②
…………………… …③
………………………………… ④
………………………………… ⑤
老師說(shuō):小明解一元一次方程的一般步驟都知道卻沒(méi)有掌握好,因此解題時(shí)有一步出現(xiàn)了錯(cuò)誤,請(qǐng)你指出他錯(cuò)在 (填編號(hào));
然后,你自己細(xì)心地解下面的方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為, , , 四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)求本次被抽查的學(xué)生共有多少名?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);
(4)估計(jì)全校“”等級(jí)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+3與x軸、y軸分別相交于A、C兩點(diǎn),過(guò)點(diǎn)B(6,0),E(0,﹣6)的直線上有一點(diǎn)P,滿足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線BE的解析式及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰在復(fù)習(xí)過(guò)程中,發(fā)現(xiàn)數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例:
如圖1,線段,線段,
線段,線段
結(jié)論:數(shù)軸上任意兩點(diǎn)表示的數(shù)分別為:,(),則這兩點(diǎn)間的距離為:(即:較大的數(shù)減去較小的數(shù)).
嘗試應(yīng)用:
(1)若數(shù)軸上點(diǎn),點(diǎn)代表的數(shù)分別是-3,-1,則______.
(2)把一條數(shù)軸在數(shù)處對(duì)折,表示-9和3兩數(shù)的點(diǎn)恰好互相重合,此時(shí)______.
(3)數(shù)軸上的兩個(gè)點(diǎn)之間的距離為6,其中一個(gè)點(diǎn)表示的數(shù)為3,另一個(gè)點(diǎn)表示的數(shù)為,則______.
問(wèn)題解決:
(4)如圖2,點(diǎn)表示數(shù),點(diǎn)表示-2,點(diǎn)表示且,問(wèn)點(diǎn)和點(diǎn)分別表示什么數(shù)?為什么?
(5)上述(4)的條件下,圖2所示的數(shù)軸上,是否存在滿足條件的點(diǎn),使用?
若存在,請(qǐng)直接寫(xiě)出所表示的數(shù),若不存在,請(qǐng)說(shuō)明理由?(點(diǎn)不與點(diǎn),點(diǎn),點(diǎn)重合)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點(diǎn),BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( 。
A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點(diǎn)C與C′的距離為( 。
A. B. ﹣ C. 1 D. ﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com