【題目】如圖ABCD的對角線AC、BD交于點(diǎn)O ,AE平分BAD交BC于點(diǎn)E ,且ADC=600,AB=BC ,連接OE .下列 結(jié)論:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的個數(shù)有(

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

試題分析:由四邊形ABCD是平行四邊形,得到ABC=ADC=60°,BAD=120°,根據(jù)AE平分BAD,得到BAE=EAD=60°推出ABE是等邊三角形,由于AB=BC,得到AE=BC,得到ABC是直角三角形,于是得到CAD=30°,故正確;由于ACAB,得到SABCD=ABAC,故正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到ABOB,故錯誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)定義,三角形的角平分線,中線和高線都是(

A. 直線 B. 線段 C. 射線 D. 以上都對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(

A. 關(guān)于中心對稱的兩個圖形不一定全等

B. 全等的兩個三角形必關(guān)于一個點(diǎn)對稱

C. 一個中心對稱圖形只有一個對稱中心

D. 平行四邊形不是中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間共有28名工人生產(chǎn)螺栓和螺母,每人平均每天生產(chǎn)螺栓12個或螺母18個,問:如何安排工人才能使每天生產(chǎn)的螺栓和螺母按12配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtOAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為(3,,點(diǎn)C的坐標(biāo)為(1,0),且AOB=30°點(diǎn)P為斜邊OB上的一個動點(diǎn),則PA+PC的最小值為____ _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在一個直角三角形中30°角所對的直角邊為3cm,則斜邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,B=90°,AC=60cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t15).過點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.(備注:在直角三角形中30度角所對的邊是斜邊的一半)

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設(shè)B種飲料單價為x元/瓶,那么下面所列方程正確的是( )
A.2(x﹣1)+3x=13
B.2(x+1)+3x=13
C.2x+3(x+1)=13
D.2x+3(x﹣1)=13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒的直徑是0.000008m,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.8×106m
B.8×105m
C.8×108m
D.8×104m

查看答案和解析>>

同步練習(xí)冊答案