【題目】如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ANMB和正方形ACDE,NC、BE交于點(diǎn)P.
探究:試判斷BE和CN的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由.
應(yīng)用:Q是線段BC的中點(diǎn),若BC=6,則PQ= .
【答案】見(jiàn)解析
【解析】試題分析:根據(jù)正方形性質(zhì)得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,證出△ANC≌△ABE即可.
試題解析:解:CN=BE,BE⊥NC.理由如下:
∵四邊形ANMB和四邊形ACDE都是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∴∠NAB+∠BAC=∠CAE+∠BAC,∴∠NAC=∠BAE.
在△ANC和△ABE中,∵,∴△ANC≌△ABE(SAS),∴CN=BE.
設(shè)CN交AB于H,交BE于P.∵△ANC≌△ABE,∴∠ABE=∠ANC.∵∠PHB=∠AHN,∴∠HPB=∠HAP=90°,∴BE⊥NC.∵四邊形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°.∵∠BHP=∠AHN,∠ANC=∠ABE,∴∠ABP+∠BHP=90°,∴∠BPC=∠ABP+∠BHP=90°.∵Q為BC中點(diǎn),BC=6,∴PQ=BC=3.故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某林場(chǎng)要考察一種幼樹(shù)在一定條件下的移植成活率,在移植過(guò)程中的統(tǒng)計(jì)結(jié)果如下表所示:
移植的幼樹(shù)n/棵 | 500 | 1000 | 2000 | 4000 | 7000 | 10000 | 12000 | 15000 |
成活的幼樹(shù)m/棵 | 423 | 868 | 1714 | 3456 | 6020 | 8580 | 10308 | 12915 |
成活的頻率 | 0.846 | 0.868 | 0.857 | 0.864 | 0.860 | 0.858 | 0.859 | 0.861 |
在此條件下,估計(jì)該種幼樹(shù)移植成活的概率為_________________(精確到);若該林場(chǎng)欲使成活的幼樹(shù)達(dá)到4.3萬(wàn)棵,則估計(jì)需要移植該種幼樹(shù)_________萬(wàn)棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長(zhǎng)=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)類比計(jì)算
①6×12=1×2×3;
②6×22=2×3×5﹣1×2×3;
③6×32=3×4×7﹣2×3×5;
④6×42=4×5×9﹣3×4×7;
⑤ ;
(2)規(guī)律提煉
寫(xiě)出第n個(gè)式子(用含字母n的式子表示).
(3)問(wèn)題解決
求12+22+33+42+…+592+602的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。
A. 2,3 B. 2,9 C. 4,25 D. 4,27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過(guò)作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過(guò)點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) A、B 在數(shù)軸上表示的數(shù)分別為﹣12 和 8,兩只螞蟻 M、N 分別 從 A、B 兩點(diǎn)同時(shí)出發(fā),相向而行.M 的速度為 2 個(gè)單位長(zhǎng)度/秒,N 的速度為 3 個(gè)單位長(zhǎng)度/秒.
(1)運(yùn)動(dòng) 秒鐘時(shí),兩只螞蟻相遇在點(diǎn) P;點(diǎn) P 在數(shù)軸上表示的數(shù) 是 ;
(2)若運(yùn)動(dòng) t 秒鐘時(shí),兩只螞蟻的距離為 10,求出 t 的值(寫(xiě)出解題過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)2個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示是-3,已知A、B是數(shù)軸上的點(diǎn),請(qǐng)參照下圖并思考,完成下列各題.
(1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.A、B兩點(diǎn)間的距離是__________.
(2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.A、B兩點(diǎn)間的距離是____.
(3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向左移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示的數(shù)是___.A、B兩點(diǎn)間的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,c,d,且滿足a,b到點(diǎn) -7的距離為1 (a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線段AB以3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以1單位長(zhǎng)度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線段AB,線段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問(wèn)是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com