【題目】如圖,在平面直角坐標系xOy中,AB,CD,EF,GH是正方形OPQR邊上的線段,點M在其中某條線段上,若射線OM與x軸正半軸的夾角為α,且sinα>cosα,則點M所在的線段可以是( 。
A.AB和CDB.AB和EFC.CD和GHD.EF和GH
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線的圖象與反比例函數(shù)的圖象交于點.
(1)求、的值;
(2)點是軸上的一點,過點作軸的垂線,交直線于點,交反比例函數(shù)的圖象于點.橫、縱坐標都是整數(shù)的點叫做整點.記的圖象在點,之間的部分與線段,圍成的區(qū)域(不含邊界)為.
①當時,直接寫出區(qū)域內(nèi)的整點的坐標為______;
②若區(qū)域內(nèi)恰有6個整點,結合函數(shù)圖象,求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線PQ與⊙O相切于點C,以OB,BC為邊作OBCD,連接AD并延長交⊙O于點E,交直線PQ于點F.
(1)求證:AF⊥CF;
(2)連接OC,BD交于點H,若tan∠OCB=3,⊙O的半徑是5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l及直線l外一點P.如圖,
(1)在直線l上取一點A,連接PA;
(2)作PA的垂直平分線MN,分別交直線l,PA于點B,O;
(3)以O為圓心,OB長為半徑畫弧,交直線MN于另一點Q;
(4)作直線PQ.
根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是( )
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,則∠APQ=60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是直徑AB上一定點,E,F分別是AD,BD的中點,P是上一動點,連接PA,PE,PF.已知AB=6cm,設A,P兩點間的距離為xcm,P,E兩點間的距離為y1cm,P,F兩點間的距離為y2cm.
小騰根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小騰的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0.97 | 1.27 |
| 2.66 | 3.43 | 4.22 | 5.02 |
y2/cm | 3.97 | 3.93 | 3.80 | 3.58 | 3.25 | 2.76 | 2.02 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結合函數(shù)圖象,解決問題:當△PEF為等腰三角形時,AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,點D為BC邊的中點,以AD為直徑作⊙O,分別與AB,AC交于點E,F,過點E作EG⊥BC于G.
(1)求證:EG是⊙O的切線;
(2)若AF=6,⊙O的半徑為5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:
商品 | 甲 | 乙 |
進價(元/件) | x60 | x |
售價(元/件) | 200 | 100 |
若用1800元購進甲種商品的件數(shù)與用900元購進乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進價是多少元?
(2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設銷售完100件甲、乙兩種商品的總利潤為w元,求w與a之間的函數(shù)關系式,并求出w的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組;
(2)樣本中,女生身高在E組的人數(shù)有 人;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,點M為BC中點.點P為AB邊上一動點,點D為BC邊上一動點,連接DP,以點P為旋轉(zhuǎn)中心,將線段PD逆時針旋轉(zhuǎn)90°,得到線段PE,連接EC.
(1)當點P與點A重合時,如圖2.
①根據(jù)題意在圖2中完成作圖;
②判斷EC與BC的位置關系并證明.
(2)連接EM,寫出一個BP的值,使得對于任意的點D總有EM=EC,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com