如圖,⊙O的直徑AB與弦CD相交于點E,若AE=5,BE=1,,則∠AED=_____
30。
【解析】
試題分析:連接OD,過圓心O作OH⊥CD于點H.根據(jù)垂徑定理求得DH=CH= ;然后根據(jù)已知條件“AE=5,BE=1”求得⊙O的直徑AB=6,從而知⊙O的半徑OD=3,OE=2;最后利用勾股定理求得OH=1,再由30°角所對的直角邊是斜邊的一半來求∠AED.解:連接OD,過圓心O作OH⊥CD于點H.∴DH=CH=又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半徑);∴OE=2;∴在Rt△ODH中,OH=1(勾股定理);在Rt△OEH中,OH=∴∠OEH=30°,即∠AED=30°.故答案是:30°.
考點:本題考查了垂徑定理
點評:此類試題屬于難度一般的試題,待定系數(shù)法也是很重要的一種解決方法,考生要注意分析待定系數(shù)法的基本求法
科目:初中數(shù)學(xué) 來源: 題型:
BC |
BD |
3 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
CP+DP |
BP+AP |
AP |
DP |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
9 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com