【題目】在下列條件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶5∶6,③∠A=90°-∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有 ( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E是BC的中點(diǎn),以點(diǎn)A為中心,把△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,設(shè)點(diǎn)E的對應(yīng)點(diǎn)為F.
(1)畫出旋轉(zhuǎn)后的三角形.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求點(diǎn)E運(yùn)動(dòng)到點(diǎn)F所經(jīng)過的路徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則△AEF的周長=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD與∠BOE的補(bǔ)角;
(2)試判斷∠COD與∠COE具有怎樣的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a﹣p=(a≠0),即a的負(fù)P次冪等于a的p次冪的倒數(shù).例:4﹣2=
(1)計(jì)算:5﹣2= ;(﹣2)﹣2= ;
(2)如果2﹣p=,那么p= ;如果a﹣2=,那么a= ;
(3)如果a﹣p=,且a、p為整數(shù),求滿足條件的a、p的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題不正確的是( )
A.0是整式
B.x=0是一元一次方程
C.(x+1)(x﹣1)=x2+x是一元二次方程
D. 是二次根式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=50°,點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與B,C重合),連接AD,作∠ADE=50°,DE交線段AC于E.
(1)若DE=CE,求證:AB∥DE;
(2)若DC=2,求證:△ABD≌△DCE;
(3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請求出∠BDA的度數(shù);若不可以,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系上,已知點(diǎn)A(8,4),AB⊥y軸于B,AC⊥x軸于C,直線y=x交AB于D.
(1)直接寫出B、C、D三點(diǎn)坐標(biāo);
(2)若E為OD延長線上一動(dòng)點(diǎn),記點(diǎn)E橫坐標(biāo)為a,△BCE的面積為S,求S與a的關(guān)系式;
(3)當(dāng)S=20時(shí),過點(diǎn)E作EF⊥AB于F,G、H分別為AC、CB上動(dòng)點(diǎn),求FG+GH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB =AC,AD⊥BC于點(diǎn)D,AM是△ABC的外角∠CAE的平分線.
(1)求證:AM∥BC;
(2)若DN平分∠ADC交AM于點(diǎn)N,判斷△ADN的形狀并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com