【題目】在矩形ABCD中,MAD邊上一點(diǎn),MB平分∠AMC

1)如圖1,求證:BCMC;

2)如圖2,GBM的中點(diǎn),連接AG、DG,過(guò)點(diǎn)MMNABDG于點(diǎn)E、交BC于點(diǎn)N

求證:AGDG

當(dāng)DGGE13時(shí),求BM的長(zhǎng).

【答案】1)見(jiàn)解析;(2)①見(jiàn)解析;②2

【解析】

1)根據(jù)平行線(xiàn)的性質(zhì)得到∠AMB=∠MBC,根據(jù)角平分線(xiàn)的定義得到∠AMB=∠BMC,根據(jù)等腰三角形的判定定理證明;

2連接GC,根據(jù)等腰三角形的三線(xiàn)合一得到∠BGC90°,證明△AGD≌△BGC,根據(jù)全等三角形的性質(zhì)證明;

證明△MGE∽△DGM,根據(jù)相似三角形的性質(zhì)計(jì)算即可.

1)證明:四邊形ABCD是矩形,

ADBC,

∴∠AMBMBC,

MB平分AMC,

∴∠AMBBMC,

∴∠BMCMBC,

BCMC;

2證明:連接GC

CMCB,GBM的中點(diǎn),

∴∠BGC90°,

∵∠BAM90°,GBM的中點(diǎn),

GAGBGM

∴∠GABGBA,

∴∠GADGBC,

AGDBGC中,

,

∴△AGD≌△BGCSAS),

∴∠AGDBGC90°,即AGDG;

解:MNAB

∴∠MNB90°,又∵∠BGC90°

∴∠BMNBCG,

∵△AGD≌△BGC

∴∠GDMBCG,

∴∠BMNGDM,又MGEDGM,

∴△MGE∽△DGM

,

MG2DGGE13,

MG

BM2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(40),∠AOC60°,垂直于x軸的直線(xiàn)ly軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線(xiàn)l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).

1)求A、B兩點(diǎn)的坐標(biāo);

2)設(shè)△OMN的面積為S,直線(xiàn)l運(yùn)動(dòng)時(shí)間為t秒(0t6),試求St的函數(shù)表達(dá)式;

3)在題(2)的條件下,是否存在某一時(shí)刻,使得△OMN的面積與OABC的面積之比為34?如果存在,請(qǐng)求出t的取值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)是常數(shù))經(jīng)過(guò)點(diǎn).

(1)求該拋物線(xiàn)的解析式和頂點(diǎn)坐標(biāo);

(2)P(m,t)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為.

當(dāng)點(diǎn)落在該拋物線(xiàn)上時(shí),求的值;

當(dāng)點(diǎn)落在第二象限內(nèi),取得最小值時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(pán)A,B分別分成3等份的扇形區(qū)域,并在每一個(gè)小區(qū)域內(nèi)標(biāo)上數(shù)字.小明和小穎兩個(gè)人玩轉(zhuǎn)盤(pán)游戲,游戲規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),若指針兩區(qū)域的數(shù)字均為奇數(shù),則小明勝;若指針兩區(qū)域的數(shù)字均為偶數(shù),則小穎勝;若有指針落在分割線(xiàn)上,則無(wú)效,需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形,AB4cm,AD3cm,動(dòng)點(diǎn)M、N分別從D、B同時(shí)出發(fā),都以1cm/秒的速度運(yùn)動(dòng),點(diǎn)M沿DA向點(diǎn)終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)NNPBC,交AC于點(diǎn)P,連接MP,已知運(yùn)動(dòng)的時(shí)間為t秒(0t3).

1)當(dāng)t1秒時(shí),求出PN的長(zhǎng);

2)若四邊形CDMP的面積為s,試求st的函數(shù)關(guān)系式;

3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t使四邊形CDMP的面積與四邊形ABCD的面積比為38,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

4)在點(diǎn)M、N運(yùn)動(dòng)過(guò)程中,△MPA能否成為一個(gè)等腰三角形?若能,試求出所有t的可能值;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC4,BC4,點(diǎn)DAC的中點(diǎn),點(diǎn)F是邊AB上一動(dòng)點(diǎn),沿DF所在直線(xiàn)把ADF翻折到ADF的位置,若線(xiàn)段ADAB于點(diǎn)E,且BAE為直角三角形,則BF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】主題班會(huì)課上,王老師出示了如圖一幅漫畫(huà),經(jīng)過(guò)同學(xué)們的一番熱議,達(dá)成以下四個(gè)觀點(diǎn):

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競(jìng)爭(zhēng),合作雙贏.

要求每人選取其中一個(gè)觀點(diǎn)寫(xiě)出自己的感悟,根據(jù)同學(xué)們的選擇情況,小明繪制了如圖兩幅不完整的圖表,請(qǐng)根據(jù)圖表中提供的信息,解答下列問(wèn)題:

觀點(diǎn)

頻數(shù)

頻率

A

a

0.2

B

12

0.24

C

8

b

D

20

0.4

1)參加本次討論的學(xué)生共有   人;

2)表中a   ,b   

3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)現(xiàn)準(zhǔn)備從A,BC,D四個(gè)觀點(diǎn)中任選兩個(gè)作為演講主題,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖為放置在水平桌面上的臺(tái)燈的平面示意圖,可伸縮式燈臂AO長(zhǎng)為40 cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響).由光源0射出的光線(xiàn)沿?zé)粽中纬晒饩(xiàn)OC,OB,與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°.

(1)求該臺(tái)燈照亮桌面的寬度BC.(不考慮其他因素,結(jié)果精確到1 cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26, ≈1.73)

(2)若燈臂最多可伸長(zhǎng)至60 cm,不調(diào)整燈罩的角度,能否讓臺(tái)燈照亮桌面85 cm的寬度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2-2mx+3m)的圖象與x軸交于點(diǎn)Aa,0)和點(diǎn)Ba+n,0)(n0n為整數(shù)),與y軸交于C點(diǎn).

1)若a=1,求二次函數(shù)關(guān)系式;△ABC的面積;

2)求證:a=m-

3)線(xiàn)段AB(包括A、B)上有且只有三個(gè)點(diǎn)的橫坐標(biāo)是整數(shù),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案