【題目】由于被墨水污染,一道幾何題僅能見到如圖所示的圖形和文字:“如圖,已知:四邊形ABCD中,AD∥BC,∠D=67°,…”
(1)根據(jù)以上信息,你可以求出∠A、∠B、∠C中的哪個角?寫出求解的過程;
(2)若要求出其它的角,請你添上一個適當(dāng)?shù)臈l件: ,并寫出解題過程.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗,對函數(shù)y=|2x﹣1|的圖象和性質(zhì)進行了探究.下面是小東的探究過程,請補充完成:
(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是 ;
(2)已知:
①當(dāng)x=時,y=|2x﹣1|=0;
②當(dāng)x>時,y=|2x﹣1|=2x﹣1
③當(dāng)x<時,y=|2x﹣1|=1﹣2x;
顯然,②和③均為某個一次函數(shù)的一部分.
(3)由(2)的分析,取5個點可畫出此函數(shù)的圖象,請你幫小東確定下表中第5個點的坐標(biāo)(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐標(biāo)系xOy中,作出函數(shù)y=|2x﹣1|的圖象;
(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
①0是絕對值最小的有理數(shù);②相反數(shù)大于本身的數(shù)是負(fù)數(shù);③數(shù)軸上原點兩側(cè)的數(shù)互為相反數(shù);是有理數(shù).
A. ①② B. ①③ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD交于O,下列條件中不一定能判定這個四邊形是平行四邊形的是( )
A. AB=DC,AD=BC B. AD∥BC,AB∥DC
C. OA=OC,OB=OD D. AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點B落在點E處,AE交CD于點F,連接DE.
(1)求證:△DEC≌△EDA;
(2)求DF的值;
(3)在線段AB上找一點P,連結(jié)FP使FP⊥AC,連結(jié)PC,試判定四邊形APCF的形狀,并說明理由,直接寫出此時線段PF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“愛我汕頭,創(chuàng)文同行”的活動,倡議學(xué)生利用雙休日參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機調(diào)查了部分同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:
(1)抽查的學(xué)生勞動時間為1.5小時”的人數(shù)為 人,并將條形統(tǒng)計圖補充完整.
(2)抽查的學(xué)生勞動時間的眾數(shù)為 小時,中位數(shù)為 小時.
(3)已知全校學(xué)生人數(shù)為1200人,請你估算該校學(xué)生參加義務(wù)勞動1小時的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知某船于上午8時在A處觀測小島C在北偏東60°方向上,該船以每小時20海里的速度向東航行到B處,測得小島C在北偏東30°方向上,船以原來的速度繼續(xù)向東航行2小時,到達島C正南方點D處,船從A到D一共航行了多少海里?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com