如圖,已知AD⊥BC,F(xiàn)G⊥BC,垂足分別為D、G.且∠1=∠2,猜想:∠BDE與∠C有怎樣的關系?說明理由.

解:∠BDE=∠C.理由如下:
∵AD⊥BC,F(xiàn)G⊥BC,
∴AD∥FG,
∴∠1=∠3,
∵∠1=∠2,
∴∠2=∠3,
∴DE∥AC,
∴∠BDE=∠C.
分析:由題意可知AD∥FG,然后,結(jié)合已知條件即可推出∠2=∠3,推出DE∥AC,即可推出結(jié)論.
點評:本題主要考查平行線的判定和性質(zhì)、垂直的性質(zhì),關鍵在于熟練運用平行線的判定定理和性質(zhì)定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=BC.EC⊥AB.DF⊥AB,C.D為垂足,要使△AFD≌△BEC,還需添加一個條件.若以“ASA”為依據(jù),則添加的條件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=BC,AC=BD,∠DAC與∠CBD有什么關系?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD∥BC,AD平分∠CAE,試說明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠C=
56°
56°

查看答案和解析>>

同步練習冊答案