如圖,已知⊙O的割線PAB交⊙O于A、B兩點(diǎn),PO與⊙O交于點(diǎn)C,且PA=AB=6cm,PO=12cm,
(Ⅰ)求⊙O的半徑;
(Ⅱ)求△PBO的面積.(結(jié)果可帶根號)
(I)設(shè)⊙O的半徑為r,PO的延長線交⊙O于點(diǎn)D;
∵PA•PB=PC•PD,
∵PB=PA+AB=12,PC=PO-CO=12-r,PD=PO+OD=12+r,
∴(12-r)(12+r)=6×12,
取正數(shù)解,得r=6
2

∴⊙O的半徑為6
2
cm;(3分)

(II)過點(diǎn)O作OE⊥AB,垂足為E,則EB=
1
2
AB=3,(5分)
在Rt△EBO中,由勾股定理,得OE=
OB2-EB2
=3
7
,(6分)
∴△PBO的面積為S△PBO=
1
2
PB•OE=
1
2
×12×3
7
=18
7
(cm2).(8分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半圓O的直徑,C是半徑OA上一點(diǎn),PC⊥AB,點(diǎn)D是半圓上位于PC右側(cè)的一點(diǎn),連接AD交線段PC于點(diǎn)E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4,PC=8,設(shè)OC=x,PD2=y.
①求y關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)x=1時,求tan∠BAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在半徑OB延長線上,∠BCD=∠A=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若OC⊥AB,AC=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB與弦CD相交于點(diǎn)E,AB⊥CD,⊙O的切線BF與弦AD的延長線相交于點(diǎn)F.
(1)求證:CDBF;
(2)若⊙O的半徑為5,cos∠BCD=
4
5
,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AM切⊙O于點(diǎn)A,BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖四邊形ABCD內(nèi)接于⊙O,AB為直徑,PD切⊙O于D,與BA延長線交于P點(diǎn),已知∠BCD=130°,則∠ADP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABC的外接圓圓心O在AB上,點(diǎn)D是BC延長線上一點(diǎn),DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的邊ND上的中線.
(1)求證:AB=DN;
(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若PC=5,CD=8,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠ACB=60°,半徑為2的⊙0切BC于點(diǎn)C,若將⊙O在CB上向右滾動,則當(dāng)滾動到⊙O與CA也相切時,圓心O移動的水平距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O與⊙O′內(nèi)切點(diǎn)P,⊙O的弦AB切⊙O′于點(diǎn)C,且ABOO′.若陰影部分面積為4π,則AB的長為______.

查看答案和解析>>

同步練習(xí)冊答案