【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>
【答案】
(1)解:設(shè)該店有客房x間,房客y人;
根據(jù)題意得: ,
解得: .
答:該店有客房8間,房客63人
(2)解:若每間客房住4人,則63名客人至少需客房16間,需付費20×16=320錢;
若一次性定客房18間,則需付費20×18×0.8=288錢<320錢;
答:詩中“眾客”再次一起入住,他們應(yīng)選擇一次性訂房18間更合算
【解析】(1)題中等量關(guān)系是:抓住一房七客多七客,一房九客一房空,設(shè)未知數(shù)建立方程,求解即可。
(2)根據(jù)題意計算,若每間客房住4人,則63名客人至少需客房16間,求出所需付費;若一次性定客房18間,求出所需付費,再進行比較,即可得出結(jié)論。
【考點精析】根據(jù)題目的已知條件,利用解二元一次方程組的相關(guān)知識可以得到問題的答案,需要掌握二元一次方程組:①代入消元法;②加減消元法.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′.根據(jù)下列條件,利用格點和三角尺畫圖:
(1)補全△A′B′C′;
(2)請在AC邊上找一點D,使得線段BD平分△ABC的面積,在圖上作出線段BD;
(3)利用格點在圖中畫出AC邊上的高線BE;
(4)求△ABD的面積_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(或方程組)解應(yīng)用題:
(1)某服裝店到廠家選購甲、乙兩種服裝,若購進甲種服裝9件、乙種服裝10件,需1810元;購進甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價格相差多少元?
(2)某工廠現(xiàn)庫存某種原料1200噸,用來生產(chǎn)A、B兩種產(chǎn)品,每生產(chǎn)1噸A產(chǎn)品需這種原料2噸、生產(chǎn)費用1000元;每生產(chǎn)1噸B產(chǎn)品需這種原料2.5噸、生產(chǎn)費用900元,如果用來生產(chǎn)這兩種產(chǎn)品的資金為53萬元,那么A、B兩種產(chǎn)品各生產(chǎn)多少噸才能使庫存原料和資金恰好用完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用我們學(xué)過的知識,可以導(dǎo)出下面這個形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔、美觀.
(1)請你檢驗說明這個等式的正確性.
(2)若a=2019,b=2020,c=2021,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值嗎?
(3)若a﹣b=,b﹣c=,且a2+b2+c2=1,求ab+bc+ac的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某體育用品商店,購買50根跳繩和80個毽子共用1120元,購買30根跳繩和50個毽子共用680元.
(1)跳繩、毽子的單價各是多少元?
(2)該店在“元旦”節(jié)期間開展促銷活動,所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購買100根跳繩和100個毽子只需1700元,該店的商品按原價的幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D按逆時針方向旋轉(zhuǎn)90°得到△DCM.
(1)求證:EF=MF;(2)當(dāng)AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能比較與的大小嗎?為了解決這個問題,先把問題一般化.即比較與的大小(整數(shù)n≥1).然后,從分析n=1,n=2, n=3,……這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納、猜想,得出結(jié)論.
(1)通過計算,比較下列①到⑥各組中兩個數(shù)的大小:
① ② ③
④ ⑤ ⑥
(2)從(1)小題的結(jié)果歸納,請猜想與的大小關(guān)系:
(3)根據(jù)上面歸納猜想到的一般結(jié)論,可以得到:
_______ (填“>”、“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D
(簡單應(yīng)用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)
(問題探究)
(3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,則∠P的度數(shù)為
(拓展延伸)
(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為 (用x、y表示∠P)
(5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關(guān)系,直接寫出結(jié)論 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com