【題目】如圖,AC是⊙O的直徑,弦BD交AC于點(diǎn)E.
(1)求證:△ADE∽△BCE;
(2)如果AD2=AEAC,求證:CD=CB.
【答案】見解析
【解析】
試題分析:(1)由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可得∠A=∠B,又由對頂角相等,可證得:△ADE∽△BCE;
(2)由AD2=AEAC,可得,又由∠A是公共角,可證得△ADE∽△ACD,又由AC是⊙O的直徑,以求得AC⊥BD,由垂徑定理即可證得CD=CB.
證明:(1)如圖,∵∠A與∠B是對的圓周角,
∴∠A=∠B,
又∵∠1=∠2,
∴△ADE∽△BCE;
(2)如圖,
∵AD2=AEAC,
∴,
又∵∠A=∠A,
∴△ADE∽△ACD,
∴∠AED=∠ADC,
又∵AC是⊙O的直徑,
∴∠ADC=90°,
即∠AED=90°,
∴直徑AC⊥BD,
∴=,
∴CD=CB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四條線段的長分別為3,4,5,7,則它們首尾相連可以組成不同的三角形的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=mx+n與y=,其中m≠0,n≠0,那么它們在同一坐標(biāo)系中的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘面角是指時(shí)鐘的時(shí)針與分針?biāo)傻慕牵鐖D,圖①、圖②、圖③三個(gè)鐘面上的時(shí)刻分別記錄了某中學(xué)的早晨上課時(shí)間7:30、中午放學(xué)時(shí)間11:50、下午放學(xué)時(shí)間17:00.
(1)分別寫出圖中鐘面角的度數(shù):∠1= °、∠2= °、∠3= °;
(2)在某個(gè)整點(diǎn),鐘面角可能會(huì)等于90°,寫出可能的一個(gè)時(shí)刻為 ;
(3)請運(yùn)用一元一次方程的知識(shí)解決問題:鐘面上,在7:30~8:00之間,鐘面角等于90°的時(shí)刻是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點(diǎn)C,連接AC,求tan∠TAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑分別為CD、CE的兩個(gè)半圓相切于點(diǎn)C,大半圓M的弦與小半圓N相切于點(diǎn)F,且AB∥CD,AB=4,設(shè)、的長分別為x、y,線段ED的長為z,則z(x+y)的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=mx2﹣(m+1)x+1.
(1)求證:該拋物線與x軸總有交點(diǎn);
(2)若m為整數(shù),當(dāng)一元二次方程mx2﹣(m+1)x+1=0的根都是整數(shù)時(shí),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com