【題目】如圖,在兩建筑物之間有一根高15米的旗桿,從A點經(jīng)過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°.若旗桿底點GBC的中點,則矮建筑物的高CD為(  )

A. 20米 B. 10 C. 15 D. 5

【答案】A

【解析】如圖所示,AC交旗桿于點E,延長CDF,則DFAF.

由題可知,∠ABC=∠EGC=90°,

又∵∠C=∠C,

∴△ABC∽△EGC.

GBC的中點,

AB=2GE=30m.

RtABC中,BC=AB·tanBAC=AB·tan90°-α=10m.

又在RtADF中,AF=BC=10,DF=AF·tanβ=10m.

所以矮建筑物的高度CD=FC-FD=AB-FD=30-10=20m.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC=10,D是邊BC上一動點(不與B,C重合),∠ADE=B=α,DEAC于點E,cosα= .下列結(jié)論:

①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;

③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.

其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1,l2,l3分別過正方形ABCD的三個頂點A,D,C,且相互平行,若l1,l2的距離為2,l2l3的距離為4,則正方形的對角線長為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,點沿邊從點開始向點的速度移動,點沿邊從點開始向點的速度移動,如果點同時出發(fā),用表示移動的時間().

1)當(dāng)為何值時,為等腰三角形?

2)求四邊形的面積,并探索一個與計算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蓄電池的電壓為定植,使用此電源時,電流I(A)和電阻R(成反比例函數(shù)關(guān)系,且當(dāng)I=4A,R=5.

(1)蓄電池的電壓是多少?請你寫出這一函數(shù)的表達(dá)式.

(2)當(dāng)電流喂A時,電阻是多少?

(3)當(dāng)電阻是10.時,電流是多少?

(4)如果以此蓄電池為電源的用電器限制電流不超過10A,那么用電器的可變電阻應(yīng)該控制在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°0.94,cos70°0.34,tan70°2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元/件。試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售數(shù)量就減少10件。

(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價(元)之間的函數(shù)關(guān)系式;

(2)求銷售單價為多少元時,該文具每天的銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點中點,且,的平分線與的垂直平分線交于點,將沿上,上)折疊,點與點恰好重合,則________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD坐標(biāo)為A(00),B(03),C(3,5),D(5,0).

(1)請在平面直角坐標(biāo)系中畫出四邊形ABCD

(2)把四邊形ABCD先向上平移2個單位,再向左平移3個單位得到四邊形,求平移后各頂點的坐標(biāo);

(3)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案