在∠AOB的內(nèi)部取一點C,在∠AOB的外部取一點D,作射線OC,OD,那么下列各式錯誤的

[  ]

A.∠AOB<∠AOD
B.∠BOC<∠AOB
C.∠COD>∠AOD
D.∠AOB>∠AOC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線y=-x+3與兩坐標(biāo)軸圍成一個△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)l、2、3、
1
2
、
1
3
的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點P的橫坐標(biāo),將該數(shù)的倒數(shù)作為點P的縱坐標(biāo),請用所學(xué)的知識求出點P落在△AOB內(nèi)部的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線y=-x+3與兩坐標(biāo)軸圍成一個△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)l、2、3、3
3
、3
3
的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點P的橫坐標(biāo),再在剩下的4張卡片中任取一張,將該卡片上的數(shù)作為點P的縱坐標(biāo).
(1)請用樹狀圖或列表求出點P的坐標(biāo).
(2)求點P落在△AOB內(nèi)部的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘄春縣模擬)在平面直角坐標(biāo)系xOy中,直線y=-x+3與兩坐標(biāo)軸圍成一個△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)l、2、3、
3
2
、
2
3
的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點P的橫坐標(biāo),再在剩下的4張卡片中任取一張,將該卡片上的數(shù)作為點P的縱坐標(biāo),請用所學(xué)的知識求出點P落在△AOB內(nèi)部的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海門市一模)已知,如圖,∠MON=60°,點A、B為射線OM,ON上的動點,且AB=4
3
,在∠MON的內(nèi)部、△AOB的外部有一點P,且AP=BP,∠APB=120°.則線段OP的取值范圍是
4≤OP≤8
4≤OP≤8

查看答案和解析>>

同步練習(xí)冊答案