【題目】某水果店3月份購進甲種水果50千克、乙種水果80千克,共花費1700元,其中甲種水果以15/千克,乙種水果以20/千克全部售出;4月份又以同樣的價格購進甲種水果60千克、乙種水果40千克,共花費1200元,由于市場不景氣,4月份兩種水果均以3月份售價的8折全部售出.

1)求甲、乙兩種水果的進價每千克分別是多少元?

2)請計算該水果店3月和4月甲、乙兩種水果總贏利多少元?

【答案】(1)甲種水果的進價為每千克10元,乙種水果的進價為每千克15元;(2) 810元.

【解析】

1)設(shè)甲種水果的進價為每千克x元,乙種水果的進價為每千克y元,根據(jù)購進甲種水果50千克、乙種水果80千克,共花費1700元;購進甲種水果60千克、乙種水果40千克,共花費1200,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)根據(jù)總利潤=每千克利潤×銷售數(shù)量,即可求出該水果店3月和4月銷售甲、乙兩種水果的總贏利.

解:(1)設(shè)甲種水果的進價為每千克x元,乙種水果的進價為每千克y元,

依題意,得:

解得:

答:甲種水果的進價為每千克10元,乙種水果的進價為每千克15元.

250×1510+80×2015+60×15×0.810+40×20×0.815)=810(元).

答:該水果店3月和4月甲、乙兩種水果共贏利810元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.

(1)求A、B、C三點的坐標(biāo);

(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;

(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標(biāo);否則,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品經(jīng)銷店欲購進兩種紀(jì)念品,用160元購進的種紀(jì)念品與用240元購進的種紀(jì)念品的數(shù)量相同,每件種紀(jì)念品的進價比種紀(jì)念品的進價貴10元.

1)求兩種紀(jì)念品每件的進價分別為多少元?

2)若該商店種紀(jì)念品每件售價24元,種紀(jì)念品每件售價35元,這兩種紀(jì)念品共購進1000件,這兩種紀(jì)念品全部售出后總獲利不低于4900元,問種紀(jì)念品最多購進多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科普小組有5名成員,身高(單位:cm)分別為:160165,170,163172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )

A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大

C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,和矩形的邊都在直線,以點為圓心,24為半徑作半圓,分別交直線兩點.已知: ,,矩形自右向左在直線上平移,當(dāng)點到達(dá)點,矩形停止運動.在平移過程中,設(shè)矩形對角線與半圓的交點為 (為半圓上遠(yuǎn)離點的交點).

1)如圖2,若與半圓相切,求的值;

2)如圖3,當(dāng)與半圓有兩個交點時,求線段的取值范圍;

3)若線段的長為20,直接寫出此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園的摩天輪(如圖1)有均勻分布在圓形轉(zhuǎn)輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉(zhuǎn)動,轉(zhuǎn)一圈為分鐘.從小剛由登艙點進入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達(dá)圖2中的點_________(,),此點距地面的高度為_______m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學(xué)中一種計量天體時空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )

A. 千米B. 千米C. 千米D. 千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知ABC,ABC=90°,頂點A在第一象限,B,Cx軸的正半軸上(CB的右側(cè)),BC=2,AB=2ADCABC關(guān)于AC所在的直線對稱.

(1)當(dāng)OB=2時,求點D的坐標(biāo);

(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;

(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC

1)特殊情形:如圖1,當(dāng)DE∥BC時,有DB EC.(填“=”

2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)αα180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案