【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標(biāo)為(3,0)
(1)求m的值及拋物線的頂點坐標(biāo).
(2)點P是拋物線對稱軸l上的一個動點,當(dāng)PA+PC的值最小時,求點P的坐標(biāo).
【答案】
(1)解:把點B的坐標(biāo)為(3,0)代入拋物線y=﹣x2+mx+3得:0=﹣32+3m+3,
解得:m=2,
∴y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴頂點坐標(biāo)為:(1,4)
(2)解:連接BC交拋物線對稱軸l于點P,則此時PA+PC的值最小,
設(shè)直線BC的解析式為:y=kx+b,
∵點C(0,3),點B(3,0),
∴ ,
解得: ,
∴直線BC的解析式為:y=﹣x+3,
當(dāng)x=1時,y=﹣1+3=2,
∴當(dāng)PA+PC的值最小時,點P的坐標(biāo)為:(1,2).
【解析】(1)首先把點B的坐標(biāo)為(3,0)代入拋物線y=﹣x2+mx+3,利用待定系數(shù)法即可求得m的值,繼而求得拋物線的頂點坐標(biāo);(2)首先連接BC交拋物線對稱軸l于點P,則此時PA+PC的值最小,然后利用待定系數(shù)法求得直線BC的解析式,繼而求得答案.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=2(x﹣2)2對稱軸上的一個動點,直線x=t平行y軸,分別與y=x、拋物線交于點A,B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點C逆時針旋轉(zhuǎn)得到△A1B1C,旋轉(zhuǎn)角為ɑ(0°<ɑ<90°),連接BB1 . 設(shè)CB1交AB于點D,A1B1分別交AB,AC于點E,F(xiàn).
(1)求證:△BCD≌△A1CF;
(2)若旋轉(zhuǎn)角ɑ為30°,
①請你判斷△BB1D的形狀;
②求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
①若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標(biāo)為(4,0),寫出頂點A1 , B1的坐標(biāo);
②若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標(biāo);
③將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b與y=﹣2kx(k≠0)的圖象相交于點P(1,﹣4).
(1)求k、b的值;
(2)Q點(m,n)在函數(shù)y=kx+b的圖象上.
①求2n﹣4m+9的值;
②若一次函數(shù)y=x的圖象經(jīng)過點Q,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程
(1)x2﹣5x﹣6=0
(2)2(x﹣3)2=8
(3)4x2﹣6x﹣3=0
(4)(2x﹣3)2=5(2x﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com