(2013•襄城區(qū)模擬)如圖,反比例函數(shù)y=
kx
(k>0)與長(zhǎng)方形OABC在第一象限相交于D、E兩點(diǎn),OA=2,OC=4,連接OD、OE、DE.記△OAD、△OCE的面積分別為S1、S2
(1)①點(diǎn)B坐標(biāo)為
(4,2)
(4,2)
;②S1
=
=
S2(填“>”、“<”、“=”);
(2)當(dāng)點(diǎn)D為線段AB的中點(diǎn)時(shí),求k的值及點(diǎn)E坐標(biāo);
(3)當(dāng)S1+S2=2時(shí),試判斷△ODE的形狀,并求△ODE的面積.
分析:(1)根據(jù)OA=2,OC=4可直接得到點(diǎn)B坐標(biāo);②根據(jù)反比例函k的意義可知S1、S2都等于
1
2
|k|,即可得到答案;
(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),AD=2,得出D的坐標(biāo)是(2,2),求出解析式即可;
(3)根據(jù)當(dāng)S1+S2=2時(shí),由(1)得出S1=S2=1,進(jìn)而得出BD,BE的長(zhǎng),進(jìn)而得出DO2+DE2=OE2,△ODE是直角三角形,進(jìn)而得出三角形面積.
解答:解:(1)①根據(jù)長(zhǎng)方形OABC中,OA=2,OC=4,
則點(diǎn)B坐標(biāo)為(4,2),
②∵反比例函數(shù)y=
k
x
(k>0)與長(zhǎng)方形OABC在第一象限相交于D、E兩點(diǎn),
利用△OAD、△OCE的面積分別為S1=
1
2
AD•AO,S2=
1
2
•CO•EC,xy=k,得出,
S1=
1
2
AD•AO=
1
2
k,S2=
1
2
•CO•EC=
1
2
k,
∴S1=S2;

(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),AD=2,
∴D的坐標(biāo)是(2,2),
把D(2,2)代入y=
k
x
得:
k=2×2=4,
∴y=
4
x

∵點(diǎn)B坐標(biāo)為(4,2),
∴E點(diǎn)橫坐標(biāo)為:4,
∴4×y=4,
∴y=1,
∴E點(diǎn)坐標(biāo)為:(4,1);

(3)當(dāng)S1+S2=2時(shí),∵S1=S2,
∴S1=S2=1,
∵S1=
1
2
AD•AO=
1
2
AD×2=1,
∴AD=1,
∵S2=
1
2
•CO•EC=
1
2
×4×EC=1,
∴EC=
1
2
,
∵OA=2,OC=4,
∴BD=4-1=3,
BE=2-
1
2
=
3
2

∴DO2=AO2+AD2=4+1=5,
DE2=DB2+BE2=9+
9
4
=
45
4

OE2=CO2+CE2=16+
1
4
=
65
4
,
∴DO2+DE2=OE2
∴△ODE是直角三角形,
∵DO2=5,
∴DO=
5
,
∵DE2=
45
4
,
∴DE=
3
5
2

∴△ODE的面積為:
1
2
×DO×DE=
1
2
×
5
×
3
5
2
=
15
4
點(diǎn)評(píng):此題主要考查了反比函數(shù)的綜合應(yīng)用以及勾股定理的應(yīng)用以及三角形面積求法,利用數(shù)形結(jié)合在一起,得出BD,EB長(zhǎng)是分析解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄城區(qū)模擬)如圖,△ABC是邊長(zhǎng)為5的等邊三角形,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°,得到△EDC,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄城區(qū)模擬)李明的作業(yè)本上有四道題:
(1)a2•a3=a5,
(2)(2b23=8b6,
(3)(x+1)2=x2+1,
(4)4a6÷(-2a3)=-2a3,
如果你是他的數(shù)學(xué)老師,請(qǐng)找出他做錯(cuò)的題是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄城區(qū)模擬)函數(shù)y=
x-2
x+1
中的自變量的取值范圍為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄城區(qū)模擬)北京2008奧運(yùn)的國(guó)家體育場(chǎng)“鳥(niǎo)巢”建筑面積達(dá)25.8萬(wàn)平方米,用科學(xué)記數(shù)法表示應(yīng)為( 。┢椒矫祝

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄城區(qū)模擬)如圖已知扇形AOB的半徑為6cm,圓心角的度數(shù)為120°,若將此扇形圍成一個(gè)圓錐,則圍成的圓錐的底面半徑為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案