【題目】□ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF

(1)求證:四邊形DEBF是矩形;

(2)若AF平分∠DAB,AE=3,BF=4,求□ABCD的面積.

【答案】(1)證明見解析(2)32

【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可證DF∥EB,然后根據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形可證四邊形DEBF是平行四邊形,然后根據(jù)有一個(gè)角是直角的平行四邊形是矩形可證;

(2)根據(jù)(1)可知DE=BF,然后根據(jù)勾股定理可求AD的長(zhǎng),然后根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)可求得DF=AD,然后可求CD的長(zhǎng),最后可用平行四邊形的面積公式可求解.

試題解析:(1)∵四邊形ABCD是平行四邊形,

DCAB,即DFEB

又∵DFBE,

∴四邊形DEBF是平行四邊形.

DEAB,

∴∠EDB=90°.

∴四邊形DEBF是矩形.

(2)∵四邊形DEBF是矩形,

DEBF=4,BDDF

DEAB,

AD5

DCAB

∴∠DFA=∠FAB

AF平分∠DAB,

∴∠DAF=∠FAB

∴∠DAF=∠DFA

DFAD=5.

BE=5.

ABAEBE=3+5=8.

∴S□ABCDAB·BF=8×4=32.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AFBC,垂足為D,點(diǎn)E為弧BF上一點(diǎn),且BE=CF,

(1)求證:AE是⊙O的直徑;

(2)若∠ABC=EAC,AE=8,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有兩地,甲,乙兩輛貨車都要從地送貨到地,甲車先從地出發(fā)勻速行駛,3小時(shí)后乙車從地出發(fā),并沿同一路線勻速行駛,當(dāng)乙車到達(dá)地后立刻按原速返回,在返回途中第二次與甲車相遇,甲車出發(fā)的時(shí)間記為(小時(shí)),兩車之間的距離記為(千米),的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇是甲車距離地( )千米.

A.495B.505C.515D.525

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象上,點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一支于點(diǎn)B,以AB為斜邊作等腰直角△ABC,頂點(diǎn)C在第四象限,ACx軸交于點(diǎn)P,連結(jié)BP,在點(diǎn)A運(yùn)動(dòng)過程中,當(dāng)BP平分∠ABC時(shí),點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是以AB為直徑的ABC的外接圓,過點(diǎn)A作O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:DAC=DCE;

(2)若AB=2,sinD=,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=k1x+bx軸、y軸相交于P、Q兩點(diǎn),與y=的圖象相交于A(﹣2,m)、B(1,n)兩點(diǎn),連接OA、OB,給出下列結(jié)論:①k1k2<0;m+n=0;SAOP=SBOQ;④不等式k1x+b>的解集是x<﹣20<x<1,其中正確的結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、23、45這五個(gè)數(shù)中,先任意取一個(gè)數(shù)a,然后在余下的數(shù)中任意取出一個(gè)數(shù)b,組成一個(gè)點(diǎn)(a,b).求組成的點(diǎn)(ab)恰好橫坐標(biāo)為偶數(shù)且縱坐標(biāo)為奇數(shù)的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年,教育部多次明確表示,今后中小學(xué)生參加體育活動(dòng)情況、學(xué)生體質(zhì)健康狀況和運(yùn)動(dòng)技能等級(jí)納入初中、高中學(xué)業(yè)水平考試,納入學(xué)生綜合素質(zhì)評(píng)價(jià)體系.為更好掌握學(xué)生體育水平,制定合適的學(xué)生體育課內(nèi)容,某初級(jí)中學(xué)對(duì)本校初一,初二兩個(gè)年級(jí)的學(xué)生進(jìn)行了體育水平檢測(cè).為了解情況,現(xiàn)從兩個(gè)年級(jí)抽樣調(diào)查了部分學(xué)生的檢測(cè)成績(jī),過程如下:

(收集數(shù)據(jù))從初一、初二年級(jí)分別隨機(jī)抽取了20名學(xué)生的水平檢測(cè)分?jǐn)?shù),數(shù)據(jù)如下:

初一年級(jí)

88

58

44

90

71

88

95

63

70

90

81

92

84

84

95

31

90

85

76

85

初二年級(jí)

75

82

85

85

76

87

69

93

63

84

90

85

64

85

91

96

68

97

57

88

(整理數(shù)據(jù))按如下分段整理樣本數(shù)據(jù):

分段

年級(jí)

0x60

60x70

70x80

80x90

90x100

初一年級(jí)

a

1

3

7

b

初二年級(jí)

1

4

2

8

5

(分析數(shù)據(jù))對(duì)樣本數(shù)據(jù)邊行如下統(tǒng)計(jì):

統(tǒng)計(jì)量

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一年級(jí)

78

c

90

284.6

初二年級(jí)

81

85

d

126.4

(得出結(jié)論)

1)根據(jù)統(tǒng)計(jì),表格中a、b、c、d的值分別是      、   、   

2)若該校初一、初二年級(jí)的學(xué)生人數(shù)分別為800人和1000人,則估計(jì)在這次考試中,初一、初二成績(jī)90分以上(含90分)的人數(shù)共有   人.

3)根據(jù)以上數(shù)據(jù),你認(rèn)為   (填“初一“或“初二”)學(xué)生的體育整體水平較高.請(qǐng)說明理由(一條理由即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案