利用你的結(jié)論,解答:
若a、b、c為整數(shù),且|a-b|+|c-a|=1,求|a-b|+|b-c|+|c-a|的值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,則有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,則有x1+x2=-
4
3
,x1x2=-
7
3

(1)根據(jù)以上①②③請你猜想:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實(shí)數(shù)根為x1,x2,那么x1,x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結(jié)論,解決下面的問題:
已知關(guān)于x的方程x2+(2k+1)x+k2-2=0有實(shí)數(shù)根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長分別為
5
、
8
、
17
,請?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖①根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖②和圖③,請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

(2)利用(1)的結(jié)論解答如下問題:
銳角△ABC中,兩邊a=1,b=3,求第三邊的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
解答下面的問題:
(1)計(jì)算
1
5×6
=
1
5
-
1
6
1
5
-
1
6

(2)若n為正整數(shù),請你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(3)利用你的結(jié)論求:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10

查看答案和解析>>

同步練習(xí)冊答案