【題目】如圖,所有正三角形的一邊平行于x軸,一頂點在y軸上.從內到外,它們的邊長依次為2,4,6,8,…,頂點依次用A1、A2、A3、A4…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,則頂點A3的坐標是 , A92的坐標是

【答案】(0, ﹣1);(31,﹣31)
【解析】解:∵△A1A2A3的邊長為2,
∴△A1A2A3的高線為2× = ,
∵A1A2與x軸相距1個單位,
∴A3O= ﹣1,
∴A3的坐標是(0, ﹣1);
∵92÷3=30…2,
∴A92是第31個等邊三角形的第2個頂點,
第31個等邊三角形邊長為2×31=62,
∴點A92的橫坐標為 ×62=31,
∵邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,
∴點A92的縱坐標為﹣31,
∴點A92的坐標為(31,﹣31).
故答案為:(0, ﹣1);(31,﹣31).
根據(jù)等邊三角形的性質求出第一個三角形的高,然后求出A3O即可得解;
先根據(jù)每一個三角形有三個頂點確定出A92所在的三角形,再求出相應的三角形的邊長以及A92的縱坐標的長度,即可得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)要求計算下列問題:
(1)計算(﹣ 2﹣2cos45°+( 0+ +(﹣1)2017
(2)先化簡,再求值 ,其中a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程(組)解應用題 某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,但每件進價比第一批襯衫的每件進價少了10元,且進貨量是第一次進貨量的一半,求第一批購進這種襯衫每件的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=3,OC=2,將矩形OABC向上平移4個單位得到矩形O1A1B1C1

(1)若反比例函數(shù)y= 和y= 的圖象分別經(jīng)過點B、B1 , 求k1和k2的值;
(2)將矩形O1A1B1C1向左平移得到O2A2B2C2 , 當點O2、B2在反比例函數(shù)y= 的圖象上時,求平移的距離和k3的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水上樂園有一個滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°

(1)求調整后的滑梯AD的長度;
(2)調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③

觀察上述等式,猜想:對任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對∠A證明你的猜想;

(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③

觀察上述等式,猜想:對任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對∠A證明你的猜想;

(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經(jīng)過B,C兩點,已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的方程x2+2mx+m2+3m﹣2=0有兩個實數(shù)根x1、x2 , 則x1(x2+x1)+x22的最小值為

查看答案和解析>>

同步練習冊答案