【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價(jià)促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場調(diào)查,若按每個(gè)玩具280元銷售時(shí),每月可銷售300個(gè).若銷售單價(jià)每降低1元,每月可多售出2個(gè).據(jù)統(tǒng)計(jì),每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷量y(個(gè))滿足如下關(guān)系:
月產(chǎn)銷量y(個(gè)) | … | 160 | 200 | 240 | 300 | … |
每個(gè)玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)每月產(chǎn)銷量y(個(gè))與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為; 從上表可知,每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷量y(個(gè))之間滿足反比例函數(shù)關(guān)系式,求出Q與y之間的關(guān)系式;
(2)若每個(gè)玩具的固定成本為30元,求它的銷售單價(jià)是多少元?
(3)若該廠這種玩具的月產(chǎn)銷量不超過400個(gè),求此時(shí)銷售單價(jià)最低為多少元?
【答案】
(1)y=﹣2x+860
(2)解:當(dāng)Q=30時(shí),y=320,由(1)可知y=﹣2x+860,所以x=270,即銷售單價(jià)為270元,
由于 = ,
∴成本占銷售價(jià)的 .
(3)解:若y≤400,則Q≥ ,即Q≥24,固定成本至少是24元,
400≥﹣2x+860,解得x≥230,即銷售單價(jià)最低為230元.
【解析】解;(1)由于銷售單價(jià)每降低1元,每月可多售出2個(gè),所以月產(chǎn)銷量y(個(gè))與銷售單價(jià)x (元)之間存在一次函數(shù)關(guān)系,不妨設(shè)y=kx+b,則(280,300),(279,302)滿足函數(shù)關(guān)系式,得 , 解得 ,
產(chǎn)銷量y(個(gè))與銷售單價(jià)x (元)之間的函數(shù)關(guān)系式為y=﹣2x+860.
觀察函數(shù)表可知兩個(gè)變量的乘積為定值,所以固定成本Q(元)與月產(chǎn)銷量y(個(gè))之間存在反比例函數(shù)關(guān)系,不妨設(shè)Q= ,將Q=60,y=160代入得到m=9600,
此時(shí)Q= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,△DAC和△DBE都是等邊三角形.
(1)求證:△DAB≌△DCE;
(2)BD、CE交于點(diǎn)F,若∠ADB為鈍角,在不添加任何輔助線的情況下,直接寫出圖中所有不是60°且相等的銳角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交DC于點(diǎn)F,設(shè)BE=x,F(xiàn)C=y,則當(dāng)點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2= 的圖象交于點(diǎn)A(﹣4,m),且與y軸交于點(diǎn)B,第一象限內(nèi)點(diǎn)C在反比例函數(shù)y2= 的圖象上,且以點(diǎn)C為圓心的圓與x軸,y軸分別相切于點(diǎn)D,B
(1)求m的值;
(2)求一次函數(shù)的表達(dá)式;
(3)根據(jù)圖象,當(dāng)y1<y2<0時(shí),寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點(diǎn)),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,BD= , 對角線MN長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班50名學(xué)生參加1分鐘跳繩體育考試.1分鐘跳繩次數(shù)與頻數(shù)經(jīng)統(tǒng)計(jì)后繪制出下面的頻數(shù)分布表(60~70表示為大于等于60并且小于70)和扇形統(tǒng)計(jì)圖.
等級 | 分?jǐn)?shù)段 | 1分鐘跳繩次數(shù)段 | 頻數(shù)(人數(shù)) |
A | 120 | 254~300 | 0 |
110~120 | 224~254 | 3 | |
B | 100~110 | 194~224 | 9 |
90~100 | 164~194 | m | |
C | 80~90 | 148~164 | 12 |
70~80 | 132~148 | n | |
D | 60~70 | 116~132 | 2 |
0~60 | 0~116 | 0 |
(1)求m、n的值;
(2)求該班1分鐘跳繩成績在80分以上(含80分)的人數(shù)占全班人數(shù)的百分比;
(3)根據(jù)頻數(shù)分布表估計(jì)該班學(xué)生1分鐘跳繩的平均分大約是多少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC與ΔA’B’C’關(guān)于直線l對稱,則∠B的度數(shù)為 ()
A.30°
B.50°
C.90°
D.100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑AB為6的半圓,繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,此時(shí)點(diǎn)B到了點(diǎn)B′,則圖中陰影部分的面積是( )
A.3π
B.6π
C.5π
D.4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件,不能判定△ABC與△DEF相似的是( )
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°,
D.∠B=∠E=90°, =
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com