【題目】如圖,在Rt△ABC中,∠A=90°,BC= .以BC的中點(diǎn)O為圓心的圓分別與AB、AC相切于D、E兩點(diǎn),則 的長(zhǎng)為 ( )

A.
B.
C.
D.

【答案】B
【解析】解: ∵O為BC中點(diǎn).BC=2.
∴OA=OB=OC=.
又∵AC、AB是⊙O的切線,
∴OD=OE=r.OE⊥AC,OD⊥AB,
∵∠A=90°.
∴四邊形ODAE為正方形.
∴∠DOE=90°.
∴(2r)2+(2r)2=.
∴r=1.
∴弧DE===.
所以答案是B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直角三角形斜邊上的中線的相關(guān)知識(shí),掌握直角三角形斜邊上的中線等于斜邊的一半,以及對(duì)勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張直角三角形紙片BEC的斜邊放在矩形ABCD的BC邊上,恰好完全重合,BE、CE分別交AD于點(diǎn)F、G,BC=6,AF:FG:GD=3:2:1,則AB的長(zhǎng)為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解答過(guò)程:如圖甲,ABCD,探索∠P與∠A,∠C之間的關(guān)系.

解:過(guò)點(diǎn)PPEAB.

ABCD,

PEABCD(平行于同一條直線的兩條直線互相平行)

∴∠1+∠A180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

2+∠C180°(兩直線平行,同旁內(nèi)角互補(bǔ))

∴∠1+∠A+∠2+∠C360°.

又∵∠APC=∠1+∠2,

∴∠APC+∠A+∠C360°.

如圖乙和圖丙,ABCD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2+bx+c與y軸交于點(diǎn)C(0,﹣4),與x軸交于點(diǎn)A、B,且B點(diǎn)的坐標(biāo)為(2,0).

(1)求拋物線的解析式;
(2)若點(diǎn)P是AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC交BC于點(diǎn)E,連接CP,求△PCE面積最大時(shí)P點(diǎn)的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),當(dāng)△OMD為等腰三角形時(shí),連接MP、ME,把△MPE沿著PE翻折,點(diǎn)M的對(duì)應(yīng)點(diǎn)為點(diǎn)N,直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】班長(zhǎng)調(diào)查了三班近 10 天的數(shù)學(xué)課堂小測(cè)驗(yàn),在這 10 天,小測(cè)驗(yàn)的不及格人數(shù)為(單位:個(gè))0,2,0, 3,1,1,0,2,5,1.在這 10 天中小測(cè)驗(yàn)不及格的人數(shù)(

A. 中位數(shù)為 1.5 B. 方差為 1.5 C. 極差為 1.5 D. 標(biāo)準(zhǔn)差為 1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cos∠EFG的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線EF、CD相交于點(diǎn)O,OAOB,OC平分∠AOF.

(1)若∠AOE=40°,求∠BOD的度數(shù)

(2)若∠AOE=30°,請(qǐng)直接寫出∠BOD的度數(shù)

(3)觀察(1)(2)的結(jié)果,猜想∠AOE和∠BOD的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).

(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

同步練習(xí)冊(cè)答案