在平面直角坐標系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點B按順時針方向旋轉(zhuǎn)得到△DCB,使得點D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長;
(3)求過A、D兩點的直線的解析式.

【答案】分析:(1)利用△DCB是由△AOB繞著點B按順時針方向旋轉(zhuǎn)得到的,得出△DCB也是邊長為2的等邊三角形,進而求出△OBC≌△ABD即可得出答案;
(2)作CF⊥OD交x軸于點F.由勾股定理得:CF2=BC2-BF2,求出CF,進而得出CO.
(3)首先求出A,D兩點的坐標,進而得出直線AD的解析式即可.
解答:解:(1)∵△AOB是邊長為2的等邊三角形,
∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,
又△DCB是由△AOB繞著點B按順時針方向旋轉(zhuǎn)得到的,
∴△DCB也是邊長為2的等邊三角形,
∴∠OBA=∠CBD=60°,OB=AB,BC=BD,
又∠OBC=∠OBA+∠ABC=∠CBD+∠ABC=∠ABD
∴△OBC≌△ABD(SAS),
∴OC=AD(全等三角形的對應邊相等),

(2)如圖1,作CF⊥OD交x軸于點F,則F為BD的中點,
∴BF=1,
在Rt△BCF中,BC=2,BF=1,
由勾股定理得:CF2=BC2-BF2=4-1=3,
CF=
在Rt△OCF中,OF=OB+BF=2+1=3,
由勾股定理得:OC2=OF2+CF2=9+3=12,
∴OC==2

(3)作AE⊥OB交x軸于點E,則E為OB的中點,
∴OE=1,AE=CF=
∴A點的坐標是(1,)又OD=OB+BD=2+2=4,
故D點的坐標是(4,0).
設過A、D兩點的直線的解析式為y=kx+b,將A,D點的坐標代入得:
 ,
解得:
∴過A、D兩點的直線的解析式為y=-x+
點評:此題主要考查了等邊三角形的性質(zhì)以及全等三角形的判定和旋轉(zhuǎn)的性質(zhì)、待定系數(shù)法求一次函數(shù)解析式,正確利用圖形上點的坐標得出解析式是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案