【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于A(m,2m),B兩點.
(1)求一次函數(shù)的表達式;
(2)求出點B的坐標,并根據(jù)圖象直接寫出滿足不等式的x的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地高速鐵路建設成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關系,下列說法:
①甲、乙兩地相距1800千米;
②點B的實際意義是兩車出發(fā)后4小時相遇;
③m=6,n=900;
④動車的速度是450千米/小時.
其中不正確的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發(fā),以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為S(cm2),直線l的運動時間為t(s),則下列最能反映S與t之間函數(shù)關系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BC是弦,四邊形OBCD是平行四邊形,AC與OB相交于點P,給出下列結論:①AC⊥CD;②∠CAD=30°;③OB⊥AC;④CD=2OP.其中正確的個數(shù)為( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A在x軸負半軸上,點B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點A的坐標;
(2)點E在y軸負半軸上,直線EC交線段AB于點C,交x軸于點D.若C點坐標為(-6.m),求:直線AB的表達式和經(jīng)過點C得反比例函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”:如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.解決問題:
(1)如圖1,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB與BC的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于點O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點E,F.
(1)求證:AB是⊙O的切線;
(2)延長AO交⊙O于點D,連接CD,若AD=2AC,求tanD的值;
(3)在(2)的條件下,設⊙O的半徑為3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(-2,-1),(1,1)兩點,則下列關于此二次函數(shù)的說法正確的是【 】
A.y的最大值小于0 B.當x=0時,y的值大于1
C.當x=-1時,y的值大于1 D.當x=-3時,y的值小于0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com