精英家教網(wǎng)已知:如圖,在等邊三角形ABC中,點(diǎn)D、E分別是AB、BC延長(zhǎng)線上的點(diǎn),且BD=CE.
求證:DC=AE.
分析:根據(jù)等邊三角形的性質(zhì)可推出一組對(duì)應(yīng)角相等和一組邊相等,已知DB=EC,從而可以利用SAS判定△DBC≌△ECA,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可證得結(jié)論.
解答:證明:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,BC=CA.
∴∠DBC=∠ECA=180°-60°=120°.
在△DBC與△ECA中,
DB=EC
∠DBC=∠ECA
BC=CA
,
∴△DBC≌△ECA.
∴DC=AE.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等邊三角形的性質(zhì)及全等三角形的判定與性質(zhì)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知:如圖,在等邊三角形ABC,AD=BE=CF,D,E,F(xiàn)不是各邊的中點(diǎn),AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個(gè)三角形全等,在圖中全等三角形的組數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F(xiàn)使AD=BE=CF.
求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,在等邊三角形ABC,AD=BE=CF,D,E,F(xiàn)不是各邊的中點(diǎn),AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個(gè)三角形全等,在圖中全等三角形的組數(shù)是( 。
A.5B.4C.3D.2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市松江區(qū)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

(2010•松江區(qū)三模)已知:如圖,在等邊三角形ABC中,點(diǎn)D、E分別在邊AB、BC的延長(zhǎng)線上,且AD=BE,連接AE、CD.
(1)求證:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD經(jīng)過(guò)怎樣的圖形運(yùn)動(dòng)后,能與△ACE重合?請(qǐng)寫(xiě)出你的具體方案.(可以選擇的圖形運(yùn)動(dòng)是指:平移、旋轉(zhuǎn)、翻折)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市初中數(shù)學(xué)(初三)教學(xué)質(zhì)量抽樣分析試卷(解析版) 題型:解答題

(2010•松江區(qū)三模)已知:如圖,在等邊三角形ABC中,點(diǎn)D、E分別在邊AB、BC的延長(zhǎng)線上,且AD=BE,連接AE、CD.
(1)求證:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD經(jīng)過(guò)怎樣的圖形運(yùn)動(dòng)后,能與△ACE重合?請(qǐng)寫(xiě)出你的具體方案.(可以選擇的圖形運(yùn)動(dòng)是指:平移、旋轉(zhuǎn)、翻折)

查看答案和解析>>

同步練習(xí)冊(cè)答案