若2是關(guān)于x的一元二次方程x2+3kx-10=0的一個(gè)根,則k=________.

1
分析:根據(jù)一元二次方程的解的定義,將x=2代入一元二次方程,列出關(guān)于k的方程,然后解關(guān)于k的方程即可.
解答:∵2是關(guān)于x的一元二次方程x2+3kx-10=0的一個(gè)根,
∴x=2滿足關(guān)于x的一元二次方程x2+3kx-10=0,
∴22+3×2k-10=0,即6k-6=0,
解得k=1.
故答案是:1.
點(diǎn)評:本題考查了一元二次方程的根的定義.一元二次方程的所有根,都滿足該一元二次方程的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、若關(guān)于x的一元二次方x2+mx+n=0有兩個(gè)實(shí)數(shù)根,則符合條件的一組m,n的實(shí)數(shù)值可以是m=
2
;n=
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•香坊區(qū)二模)若x=1是關(guān)于x的一元二次方程2x2-x+a=0的一個(gè)根,則另一個(gè)根為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•吉林)已知△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,若a,b是關(guān)于x的一元二次方程x2-(c+4)x+4c+8=0的二根,且9c=25a•sinA.
(1)求證:△ABC是直角三角形.
(2)求△ABC的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市大興區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•大興區(qū)一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|====
請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=______;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

同步練習(xí)冊答案