【題目】已知:如圖①,在ABCD中,O為對角線BD的中點.過O的直線MN交直線AB于點M,交直線CD于點N;過O的另一條直線PQ交直線AD于點P,交直線BC于點Q,連接PNMQ

1)試證明PONQOM全等;

2)若點O為直線BD上任意一點,其他條件不變,則PONQOM又有怎樣的關系?試就點O在圖②所示的位置,畫出圖形,證明你的猜想;

3)若點O為直線BD上任意一點(不與點B、D重合),設ODOBk,PNx,MQy,則yx之間的函數(shù)關系式為   

【答案】(1)證明見解析;(2)證明見解析;(3)見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì)容易得到全等條件證明DOP≌△BOQ,PON≌△QOM,然后利用全等三角形的性質(zhì)得到PO=QO,MO=NO,然后再證明PON≌△QOM就可以解決問題;
2)點O為直線BD上任意一點,則MOQ∽△NOP.根據(jù)APBQ,BMCN可以得到比例線段,而∠NOP=MOQ,可以證明MOQ∽△NOP了;
3)根據(jù)(2)和已知可以得到==,根據(jù)這個等式可以求出yx之間的函數(shù)關系式.

1)證明:在平行四邊形ABCD中,ADBC,

∴∠PDO=∠QBO

∵∠DOP=∠BOQDOBO,

∴△DOP≌△BOQ

POQO

同理MONO

∵∠PON=∠QOM

∴△PON≌△QOM

2)解:畫圖如圖所示.

MOQ∽△NOP

APBQ,BMCN,

ODOBOPOQODOBONOM

OPOQONOM

∴∠NOP=∠MOQ

∴△MOQ∽△NOP

3)解:根據(jù)(2)和已知可以得到==,

ODOBk,PNxMQy,

y

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于AB兩點,連接BO并延長交函數(shù)yk≠0)的圖象于點C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;

(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,AD1FM于點K(如圖2),設旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為推動時刻聽黨話 永遠跟黨走校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學生最喜歡的一項活動進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:

1)本次共調(diào)查了   名學生;

2)將圖1的統(tǒng)計圖補充完整;

3)已知在被調(diào)查的最喜歡黨史知識競賽項目的4個學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,點D在邊AB上,點E在線段CD上,且∠ACD=B=BAE.

1)求證:;

2)當點ECD中點時,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對第二十屆中國哈爾濱冰雪大世界主題景觀的了解情況,在全體學生中隨機抽取了部分學生進行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計圖:

(1)本次調(diào)查共抽取了多少名學生;

(2)通過計算補全條形圖;

(3)若該學校共有名學生,請你估計該學校選擇比較了解項目的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAC=45°,AB=8,要使?jié)M足條件的ABC惟一確定,那么BC的長度x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一塊邊長為60㎝的正方形薄鋼片制作一個長方體盒子:如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形,如圖(1),然后把四邊折合起來,如圖(2)

1)求做成的盒子底面積y(2)與截去小正方形邊長x()之間的函數(shù)關系式;

2)當做成的盒子的底面積為9002,試求該盒子的容積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如圖1,過點PPEy軸于點E.求PAE面積S的最大值;

(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案