【題目】如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.
(1)求反比例函數(shù)解析式;
(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).
【答案】(1)y=;(2)D(6,8).
【解析】
(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;
(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點(diǎn)坐標(biāo).
解:(1)作CM⊥y軸于M,如圖,
當(dāng)x=0時(shí),y=x+2=2,則A(0,2),
當(dāng)y=0時(shí),x+2=0,解得x=﹣2,則B(﹣2,0),
∵MC∥OB,
∴===2,
∴MC=2OB=4,AM=2OA=4,
∴C(4,6),
把C(4,6)代入y=得k=4×6=24,
∴反比例函數(shù)解析式為y=;
(2)MC交直線DE于N,如圖,
∵MC=MA,
∴△MAC為等腰直角三角形,
∴∠ACM=45°,
∴∠DCN=45°,
∴△CND為等腰直角三角形,
∴CN=DN,
∵CD=CE,
∴CN=NE=DN,
設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),
把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,
∴D(6,8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,射線AE與BC于F,過(guò)點(diǎn)F作FG⊥AC于G,則FG的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)箏又稱“紙鳶”、“鳶兒”,放風(fēng)箏是民間傳統(tǒng)游戲之一,也是清明時(shí)節(jié)人們所喜愛(ài)的活動(dòng).小李打算抓住這一機(jī)遇,以每個(gè)20元的成本制作了30個(gè)風(fēng)箏,再以每個(gè)40元的價(jià)格售出,很快就被一搶而空,于是小李計(jì)劃加緊制作第二批風(fēng)箏.
(1)預(yù)計(jì)第二批風(fēng)箏的成本是每個(gè)15元,仍以原價(jià)出售,若兩批風(fēng)箏的總利潤(rùn)不低于2850元,則第二批至少應(yīng)該制作多少個(gè)風(fēng)箏?
(2)在實(shí)際制作過(guò)程中,小李按照(1)中風(fēng)箏的最低數(shù)量進(jìn)行制作,但制作風(fēng)箏的成本比預(yù)期的15元多了a%(a>10),于是小李決定將售價(jià)也提高a%,附近的商戶受到小李的啟發(fā),也紛紛賣(mài)起了風(fēng)箏,在市場(chǎng)沖擊下,小李實(shí)際還剩下a%的風(fēng)箏沒(méi)賣(mài)出去,但仍然比第一次獲利多1668元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.?dāng)S一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B.審查書(shū)稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績(jī)較穩(wěn)定
D.?dāng)S兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為4的正方形AOBC在坐標(biāo)系中的位置如圖所示,若OB邊保持不動(dòng),推動(dòng)AOBC向右傾斜30°得四邊形DOBE,則點(diǎn)E的坐標(biāo)為( )
A.(5,4)B.(6,2)C.(6,3)D.(4+2,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于O、B兩點(diǎn),其頂點(diǎn)A坐標(biāo)為(1,1),點(diǎn)C為拋物線在第四象限內(nèi)的一點(diǎn),其坐標(biāo)為(3,﹣3).
(1)求拋物線解析式;
(2)點(diǎn)D為拋物線在第三象限內(nèi)的一點(diǎn),過(guò)點(diǎn)D向x軸作垂線段,垂足為H,是否存在點(diǎn)D使得△DHO與△AOC相似,如果存在,請(qǐng)求出點(diǎn)D坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E、F分別為拋物線以及拋物線對(duì)稱軸上的兩動(dòng)點(diǎn),請(qǐng)問(wèn)是否存在以BO為邊,B、O、E、F為頂點(diǎn)的平行四邊形,如果存在請(qǐng)直接寫(xiě)出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,請(qǐng)直接寫(xiě)出所有滿足AC條件的長(zhǎng);
(2)如圖,點(diǎn)A在以BC為直徑的圓上,BD平分∠ABC,AD∥BC,∠ADC=90°.
①求證:△ABC為比例三角形;
②求的值.
(3)若以點(diǎn)C為頂點(diǎn)的拋物線y=mx2-4mx-12m(m<0)與x軸交于A、B兩點(diǎn),△ABC是比例三角形,若點(diǎn)M(x0,y0)為該拋物線上任意一點(diǎn),總有n-≤-my02-40y0+298成立,求實(shí)數(shù)n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AD=6,E為AB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長(zhǎng)EF交BC于G,FH⊥BC,垂足為H,延長(zhǎng)DF交BC與點(diǎn)M,連接BF、DG.以下結(jié)論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6 ⑥sin∠EGB=;其中正確的個(gè)數(shù)是( 。
A.3B.4C.5D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com