定義:數(shù)學活動課上,樂老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形.
理解:(1)如圖1,已知A、B、C在格點(小正方形的頂點)上,請在方格圖中畫出以格點為頂點,AB、BC為邊的兩個對等四邊形ABCD;
(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對等四邊形;
(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點D,使四邊形ABCD為對等四邊形,并求出CD的長.
解:(1)如圖1所示(畫2個即可).
(2)如圖2,連接AC,BD,
∵AB是⊙O的直徑,
∴∠ADB=∠ACB=90°,
在Rt△ADB和Rt△ACB中,
∴Rt△ADB≌Rt△ACB,
∴AD=BC,
又∵AB是⊙O的直徑,
∴AB≠CD,
∴四邊形ABCD是對等四邊形.
(3)如圖3,點D的位置如圖所示:
①若CD=AB,此時點D在D1的位置,CD1=AB=13;
②若AD=BC=11,此時點D在D2、D3的位置,AD2=AD3=BC=11,
過點A分別作AE⊥BC,AF⊥PC,垂足為E,F(xiàn),
設(shè)BE=x,
∵tan∠PBC=,
∴AE=,
在Rt△ABE中,AE2+BE2=AB2,
即,
解得:x1=5,x2﹣5(舍去),
∴BE=5,AE=12,
∴CE=BC﹣BE=6,
由四邊形AECF為矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,,
∴,,
綜上所述,CD的長度為13、12﹣或12+
科目:初中數(shù)學 來源:2014-2015學年江蘇省濱海縣八年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分8分)如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.求證:△≌△.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲、乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機中一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如下表):
甲種品牌 化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金卷(元) | 6 | 12 | 6 |
乙種品牌 化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金卷(元) | 12 | 6 | 12 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;
(2)如果一個顧客當天在本店購物滿88元,若只考慮獲得最多的禮品卷,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=AC,∠A=36°,BD為角平分線,DE⊥AB,垂足為E.
(1)寫出圖中一對全等三角形和一對相似比不為1的相似三角形;
(2)選擇(1)中一對加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列說法正確的是( )
| A. | “購買1張彩票就中獎”是不可能事件 |
| B. | “擲一次骰子,向上一面的點數(shù)是6”是隨機事件 |
| C. | 了解我國青年人喜歡的電視節(jié)目應(yīng)作全面調(diào)查 |
| D. | 甲、乙兩組數(shù)據(jù),若S甲2>S乙2,則乙組數(shù)據(jù)波動大 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
901班的全體同學根據(jù)自己的興趣愛好參加了六個學生社團(每個學生必須參加且只參加一個),為了了解學生參加社團的情況,學生會對該班參加各個社團的人數(shù)進行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“讀書社”的學生有15人,請解答下列問題:
(1)該班的學生共有 60 名;
(2)若該班參加“吉他社”與“街舞社”的人數(shù)相同,請你計算,“吉他社”對應(yīng)扇形的圓心角的度數(shù);
(3)901班學生甲、乙、丙是“愛心社”的優(yōu)秀社員,現(xiàn)要從這三名學生中隨機選兩名學生參加“社區(qū)義工”活動,請你用畫樹狀圖或列表的方法求出恰好選中甲和乙的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com