【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學最重要的著作,約成書于四、五世紀.現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分數(shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”

譯文:“用一根繩子去量一根長木,繩子還剩余4.5,將繩子對折再量長木,長木還剩余1,問長木長多少尺?”

請解答上述問題.

【答案】6.5

【解析】

設(shè)繩長為x,根據(jù)題意列方程即可求出繩長,進而求出木長即可.

:設(shè)繩長x,則長木為(x-4.5).

依題意可得(x-4.5)-x=1.

解得x=11,x-4.5=6.5.

:長木長6.5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點,且點的橫坐標和點的縱坐標都是,求:

一次函數(shù)的解析式;(2)的面積.

根據(jù)圖象回答:當為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,在ABC中,∠A是銳角,點D,E分別在AB,AC上,且∠DCB=∠EBCA,BECD相交于點O,探究BDCE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

2)已知四邊形ABCD,連接AC、BD交于O,且滿足條件:AB+CDAD+BC,AB2+AD2BC2+DC2,請?zhí)骄?/span>ACBD的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉辦網(wǎng)絡(luò)安全知識答題競賽,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級

a

85

b

S七年級2

八年級

85

c

100

160

1)根據(jù)圖示填空:a   ,b   ,c   

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?

3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是在同一平面直角坐標系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____;

(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標系,點,點,,

以點為對稱中心,畫出,使關(guān)于點對稱,并寫出下列點的坐標:________,________

多邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,ABAC,點PBC所在直線上一個動點,過P點作PDAB、PEAC,垂足分別為DE,BF為腰AC上的高.如圖,當點P在邊BC上時,我們可得如下推理:

SABCSABP+SACP

ACBFABPD+ACPE

ABAC

ACBFACPD+PE

BFPD+PE

1)(變式)如圖,在上例的條件下,當點P運動到BC的延長線上時,試探究BF、PDPE之間的關(guān)系,并說明理由.

2)(遷移)如圖,點P是等邊△ABC內(nèi)部一點,作PDAB、PEBCPFAC,垂足分別為D、E、F,若PD1PE2,PF4.求△ABC的邊長.

3)(拓展)若點P是等邊△ABC所在平面內(nèi)一點,且點P到三邊所在直線的距離分別為2、36.請直接寫出等邊△ABC的高的所有可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,ABAC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點E,

1)若∠ACE18°,則∠ECD   

2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.

3)如圖2,作△ABC的高AF并延長,交BD于點G,交CD延長線于點H,求證:CH2+DH22AD2

查看答案和解析>>

同步練習冊答案