【題目】如圖,在平行四邊形ABCD中,AB=AE.若AE平分∠DAB,∠EAC=25°,則∠B=_____,∠AED的度數(shù)為_____.
【答案】60° 85°
【解析】
先證△ABC≌△EAD(SAS),得出∠BAC=∠AED,再證△ABE為等邊三角形.得出∠B=∠BAE=60°,求出∠BAC=85°,即可得出答案.
解:∵四邊形ABCD為平行四邊形,
∴AD∥BC,AD=BC.
∴∠DAE=∠AEB.
∵AB=AE,
∴∠AEB=∠B.
∴∠B=∠DAE.
∵在△ABC和△EAD中,,
∴△ABC≌△EAD(SAS),
∴∠BAC=∠AED,
∵AE平分∠DAB,
∴∠DAE=∠BAE;
又∵∠DAE=∠AEB,
∴∠BAE=∠AEB=∠B.
∴△ABE為等邊三角形.
∴∠B=∠BAE=60°,
∵∠EAC=25°,
∴∠BAC=85°,
∴∠AED=85°.
故答案為:60°,85°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的解析式為,將拋物線沿軸翻折得到拋物線,拋物線、的頂點分別為、,點為拋物線上一點,橫坐標(biāo)為,過點作軸的平行線交拋物線于點.
(1)當(dāng)時;
①請直接寫出拋物線的解析式;
②當(dāng)時,求的值;
(2)當(dāng)時.
①為拋物線上一動點,當(dāng)為等腰直角三角形時,求的值;
②以為邊向左作正方形,設(shè)橫坐標(biāo)為整數(shù)的點稱為“夢想點”,當(dāng)正方形的內(nèi)部(不包括邊上)有6個“夢想點”時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在練習(xí)操控航拍無人機(jī),該型號無人機(jī)在上升和下落時的速度相同,設(shè)無人機(jī)的飛行高度為y(米),小明操控?zé)o人飛機(jī)的時間為x(分),y與x之間的函數(shù)圖象如圖所示.
(1)無人機(jī)上升的速度為 米/分,無人機(jī)在40米的高度上飛行了 分.
(2)求無人機(jī)下落過程中,y與x之間的函數(shù)關(guān)系式.
(3)求無人機(jī)距地面的高度為50米時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線與的一個交點記為,與的一個交點記為,點的橫坐標(biāo)是,點在第一象限內(nèi).
(1)求點的坐標(biāo)及的表達(dá)式;
(2)點是線段上的一個動點,過點作軸的垂線,垂足為,在的右側(cè)作正方形.
①當(dāng)點的橫坐標(biāo)為時,直線恰好經(jīng)過正方形的頂點,求此時的值;
②在點的運動過程中,若直線與正方形始終沒有公共點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有________人;
(2)扇形統(tǒng)計圖中:a=________,b=_________,并把條形統(tǒng)計圖補(bǔ)充完整;
(3)若有外型完全相同的A,B,C,D粽各一個,煮熟后,小王吃了兩個,用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某客商準(zhǔn)備采購一批特色商品,經(jīng)調(diào)查,用16000元采購A型商品的件數(shù)是用7500元采購B型商品的件數(shù)的2倍,一件A型商品的進(jìn)價比一件B型商品的進(jìn)價多10元.
(1)求一件A,B型商品的進(jìn)價分別為多少元?
(2)若該客商購進(jìn)A,B型商品共250件進(jìn)行試銷,其中A型品的件數(shù)不大于B型商品的件數(shù),且不小于80件,已知A型商品的售價為240元/件,B型商品的售價為220元/件,且全部售出,設(shè)購進(jìn)A型商品m件,求該客商銷售這批商品的利潤y與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)在(2)的條件下,客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻(xiàn)慈善資金a元(0<a<80),若該客商售完所有商品并捐獻(xiàn)資金后獲得的最大收益是17100元,求的a值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,拋物線交軸于點,交軸于點.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點為拋物線上一點,連接并延長交軸于點,若點的橫坐標(biāo)為4,求的面積;
(3)如圖3,點為對稱軸右側(cè)第四象限拋物線上一點,連接并延長交軸于點,過點作交軸于點.連接,過點作交延長線于點,當(dāng)時,延長交拋物線于點,點在直線上,連接,交線段于點,將射線繞點逆時針旋轉(zhuǎn)45°,得到射線交線段于點,交直線于點,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O1與⊙O2相交于A、B兩點,且O2在⊙O1上.
(1)如圖1,AD是⊙O2的直徑,連DB并延長交⊙O1于點C,求證:CO2⊥AD.
(2)如圖2,若AD是⊙O2的非直徑的弦,直線DB交⊙O1于點C,則(1)中的結(jié)論是否成立,為什么?請加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;請補(bǔ)全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有90萬人,請你估計其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com