29、如圖1,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D為頂點(diǎn)作一個(gè)60°角,角的兩邊分別交AB、AC邊于M、N兩點(diǎn),連接MN.
(1)探究BM、MN、NC之間的關(guān)系,并說(shuō)明理由;
(2)若△ABC的邊長(zhǎng)為2,求△AMN的周長(zhǎng);
(3)若點(diǎn)M、N分別是線段AB、CA延長(zhǎng)線上的點(diǎn),其他條件不變,此時(shí)(1)中的結(jié)論是否還成立,在圖2中畫出圖形,并說(shuō)明理由.
分析:(1)延長(zhǎng)AC至E,使得CE=BM并連接DE,構(gòu)造全等三角形,找到相等的線段,MD=DE,再進(jìn)一步證明△DMN≌△DEN,進(jìn)而得到MN=BM+NC.
(2)利用(1)中結(jié)論,將△AMN的周長(zhǎng)轉(zhuǎn)化為AB、AC的和來(lái)解答.
(3)按要求作出圖形,先證△BMD≌△CED,再證△MDN≌△EDN(SAS),即可得出結(jié)論.
解答:解:(1)MN=BM+NC.理由如下:
延長(zhǎng)AC至E,使得CE=BM(或延長(zhǎng)AB至E,使得BE=CN),并連接DE.
∵△BDC為等腰三角形,△ABC為等邊三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD與△ECD中,BD=CD,∠MBD=∠ECD,CE=BM,
∴△MBD≌△ECD(SAS),
∴MD=DE,
∴△DMN≌△DEN,
∴MN=BM+NC.

(2)利用(1)中的結(jié)論得出:
△AMN的周長(zhǎng)=AM+MN+AN
=(AM+BM)+(NC+AN)
=2+2=4.

(3)按要求作出圖形,(1)中結(jié)論不成立,應(yīng)為MN=NC-BM.
在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠ECD=90°,
又∵CE=BM,BD=CD,
∴△BMD≌△CED(SAS),
∴DE=DM,
又∵ND=ND,∠EDN=∠MDN,MD=ED,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-BM.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)及等腰三角形的性質(zhì);此題從不同角度考查了作相等線段構(gòu)造全等三角形的能力,要充分利用等邊三角形及等腰三角形的性質(zhì),轉(zhuǎn)換各相等線段解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補(bǔ)全證明過(guò)程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),求證:PA=PC+
2
PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為
BC
上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景  某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個(gè)命題:
①如圖1,O是正三角形ABC的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=120°,則四邊形OPBQ的面積等于三角形ABC面積的三分之一.
②如圖2,O是正方形ABCD的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=90°,則四邊形OPBQ的面積等于正方形ABCD面積的四分之一.
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,O是正五邊形ABCDE的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=72°,則四邊形OPBQ的面積等于五邊形ABCDE面積的五分之一.
任務(wù)要求
(1)請(qǐng)你從①、②、③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
如圖4,在正n(n≥3)邊形ABCDEF…中,O是中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON 等于多少度時(shí),則四邊形OPBQ的面積等于正n邊形ABCDE…面積的n分之一?(不要求證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),求證:PA=PB+PC;
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),求證:PA=PC+
2
PB

(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,并給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)一模)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道,邊數(shù)為3時(shí),它是正三角形;我想,邊數(shù)為5時(shí),它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時(shí),它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC=
108°
108°
,請(qǐng)簡(jiǎn)要說(shuō)明圓內(nèi)接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請(qǐng)證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.
(3)根據(jù)以上探索過(guò)程,就問(wèn)題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O是正△ABC內(nèi)一點(diǎn),∠AOB=90°,∠BOC=α,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到△AEC,連接OE
(1)求證:△COE是正三角形;
(2)當(dāng)α為何值時(shí),AC⊥OE,并說(shuō)明理由;
(3)探究是否存在α的值使得點(diǎn)O到正△ABC三個(gè)頂點(diǎn)的距離之比為1:
3
:2
?若存在請(qǐng)直接寫出α的值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案