【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點C,D.
(1)直接寫出一次函數(shù)y=kx+b的表達式和反比例函數(shù)y=(x>0)的表達式;
(2)求證:AD=BC.
【答案】(1) y=-x+5,y=;(2)證明見解析.
【解析】試題分析:(1)先確定出反比例函數(shù)的解析式,進而求出點B的坐標,最后用待定系數(shù)法求出直線AB的解析式;
(2)由(1)知,直線AB的解析式,進而求出C,D坐標,構造直角三角形,利用勾股定理即可得出結論.
(1)將點A(2,4)代入中,得,m=2×4=8,∴反比例函數(shù)的解析式為,將點B(a,1)代入中,得,a=8,∴B(8,1),將點A(2,4),B(8,1)代入y=kx+b中,得: ,∴,∴一次函數(shù)解析式為;
(2)∵直線AB的解析式為,∴C(10,0),D(0,5),如圖,過點A作AE⊥y軸于E,過點B作BF⊥x軸于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根據(jù)勾股定理得,AD==,在Rt△BCF中,根據(jù)勾股定理得,BC==,∴AD=BC.
科目:初中數(shù)學 來源: 題型:
【題目】一學員在廣場上練習駕駛汽車,兩次拐彎后,行駛方向與原來的方向相同,這兩次拐彎的角度可能是( )
A.第一次向左拐50°,第二次向左拐50° B.第一次向左拐50°,第二次向右拐50°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎媽媽的網(wǎng)店加盟了“小神龍”童裝銷售,有一款童裝的進價為60元/件,售價為100元/件,因為剛加盟,為了增加銷量,準備對大客戶制定如下促銷優(yōu)惠方案:
若一次購買數(shù)量超過10件,則每增加一件,所有這一款童裝的售價降低1元/件.
例如:一次購買11件時,這11件的售價都為99元/件.請解答下列問題:
(1)一次購買20件這款童裝的售價為 元/件,所獲利潤為 元;
(2)促銷優(yōu)惠方案中,一次購買多少件這款童裝,所獲利潤為625元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在函數(shù)圖像上,過點A作x軸和y軸的平行線分別交函數(shù)圖像于點B、C,直線BC與坐標軸的交點為D、E.當點A在函數(shù)圖像上運動時,
(1)設點A橫坐標為a,則點B的坐標為 ,點C的坐標為 (用含a的字母表示);
(2)△ABC的面積是否發(fā)生變化?若不變,求出△ABC的面積,若變化,請說明理由;
(3)請直接寫出BD與CE滿足的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各圖中的MA1與NAn平行.
(1)圖①中的∠A1+∠A2= 度,圖②中的∠A1+∠A2+∠A3= 度,
圖③中的∠A1+∠A2+∠A3+∠A4= 度,圖④中的∠A1+∠A2+∠A3+∠A4+∠A5= 度,…,
第⑩個圖中的∠A1+∠A2+∠A3+…+∠A10= 度
(2)第n個圖中的∠A1+∠A2+∠A3+…+∠An= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB),且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根.線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線CD上一個動點,點Q是直線AB上一個動點.
(1)求A、B兩點的坐標;
(2)求直線CD的解析式;
(3)在坐標平面內(nèi)是否存在點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
一般地,n個相同的因數(shù)a相乘記為an,記為an.如2×2×2=23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).
(1)計算以下各對數(shù)的值:
log24= ,log216= ,log264= .
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關系式,log24、log216、log264之間又滿足怎樣的關系式 。
(3)由(2)的結果,你能歸納出一個一般性的結論嗎?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根據(jù)冪的運算法則:anam=an+m以及對數(shù)的含義證明上述結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F分別是AB,CD上的點,點G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com